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rewards) by interacting with the world

» Contrast with supervised learning

 Model-based RL: uses explicit conception of next state
and reward given current state and action

* "Model” used many difterent ways in machine learning
* Contrast with Model-free RL
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» Contrast with the Q* function (expected reward of
starting at s, making action a, and then making the
“best” action ever after)

* Contrast with (any horizon) value iteration
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