

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? discourse.odl.mit.edu ("Lecture 11" category)

Materials: Will all be available at course website

Last Time(s)

- I. State machines & Markov decision processes (MDPs)
- II. Choosing "best" actions
- III. Value iteration; Q-learning

Today's Plan

- Back to supervised learning
- II. Sequential data
- III. Recurrent neural networks

 Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning
- Model-based RL: uses explicit conception of next state and reward given current state and action

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning
- Model-based RL: uses explicit conception of next state and reward given current state and action
 - "Model" used many different ways in machine learning

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning
- Model-based RL: uses explicit conception of next state and reward given current state and action
 - "Model" used many different ways in machine learning
 - Contrast with Model-free RL

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning
- Model-based RL: uses explicit conception of next state and reward given current state and action
 - "Model" used many different ways in machine learning
 - Contrast with Model-free RL
- Q-learning

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning
- Model-based RL: uses explicit conception of next state and reward given current state and action
 - "Model" used many different ways in machine learning
 - Contrast with Model-free RL
- Q-learning
 - Contrast with the Q* function (expected reward of starting at s, making action a, and then making the "best" action ever after)

- Reinforcement learning (RL): learning (to maximize rewards) by interacting with the world
 - Contrast with supervised learning
- Model-based RL: uses explicit conception of next state and reward given current state and action
 - "Model" used many different ways in machine learning
 - Contrast with Model-free RL
- Q-learning
 - Contrast with the Q* function (expected reward of starting at s, making action a, and then making the "best" action ever after)
 - Contrast with (any horizon) value iteration

Final product

VicePresidentOfCompany@HopefullyNotARealEmailA...

Final product

All the documents are finished. Please see attached

Final product

VicePresidentOfCompany@HopefullyNotARealEmailA..

Final product

All the documents are finished. Please see attached

WikipediA

The Free Encyclopedia

English

6 183 000+ articles

Español

1637 000+ artículos

日本語

1235 000+ 記事

Русский

1 672 000+ статей

Italiano

1645 000+ voci

Deutsch

2 495 000+ Artikel

Français

2 262 000+ articles

中文

1155 000+ 條目

Português

1045 000+ artigos

Polski

1 435 000+ hasel

Final product

VicePresidentOfCompany@HopefullyNotARealEmailA..

Final product

All the documents are finished. Please see attached

WikipediA

The Free Encyclopedia

English

6 183 000+ articles

Español

1637 000+ artículos

日本語

1235 000+ 記事

Русский

1 672 000+ статей

Italiano

1645 000+ voci

Deutsch

2 495 000+ Artikel

Français

2 262 000+ articles

中文

1 155 000+ 條目

Português

1045 000+ artigos

Polski

1 435 000+ hasel

autocom	EN .	~	Q	
	Autocomplete Application that predicts the rest of a word a user is typing.			
Minimize Q Minimize Common Minimize Com	Search suggest drop-down list			
200	Automotive industry in India		ivoyage e travel gui	de
- Veni	Automotive industry in the United States		inews	ırc

Final product

VicePresidentOfCompany@HopefullyNotARealEmailA..

Final product

All the documents are finished. Please see attached

WikipediA

The Free Encyclopedia

English

6 183 000+ articles

Español

1637 000+ artículos

日本語

1235 000+ 記事

Русский

1 672 000+ статей

Italiano

1645 000+ voci

Deutsch

2 495 000+ Artikel

Français

2 262 000+ articles

中文

1 155 000+ 條目

Português

1045 000+ artigos

Polski

1 435 000+ hasel

autocom	p EN	~	Q	
	Autocomplete Application that predicts the rest of a word a user is typing.			
Objects Obj	Search suggest drop-down list			
=-1	Automotive industry in India		tivoyage e travel gu	uide
	Automotive industry in the United States	,	inews e news so	urce

Training data: lots of text

- Training data: lots of text
 - "what happens to a dream deferred"

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t
what	_
what_	h
what_h	а
what_ha	р
what_hap	р
what_happ	е

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t
what	_
what_	h
what_h	а
what_ha	p
what_hap	р
what_happ	е

Classification with 27 classes

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t
what	_
what_	h
what_h	а
what_ha	р
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	a
wha	t
what	<u>—</u>
what_	h
what_h	a
what_ha	р
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?
- Idea: use all previous characters.

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	a
wha	t
what	_
what_	h
what_h	a
what_ha	р
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?
- Idea: use all previous characters. But so far we've said $x^{(i)} \in \mathbb{R}^d$; i.e. fixed dimension

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	a
wha	t
what	_
what_	h
what_h	a
what_ha	р
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?
- Idea: use all previous characters. But so far we've said $x^{(i)} \in \mathbb{R}^d$; i.e. fixed dimension

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t
what	_
what_	h
what_h	а
what_ha	p
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?
- Idea: use all previous characters. But so far we've said $x^{(i)} \in \mathbb{R}^d$; i.e. fixed dimension

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t
what	_
what_	h
what_h	а
what_ha	p
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?
- Idea: use all previous characters. But so far we've said $x^{(i)} \in \mathbb{R}^d$; i.e. fixed dimension
- Idea: just use last character. But lose info

- Training data: lots of text
 - "what happens to a dream deferred"

features	label
W	h
wh	а
wha	t
what	_
what_	h
what_h	а
what_ha	p
what_hap	р
what_happ	е

- Classification with 27 classes
- How to featurize?
- Idea: use all previous characters. But so far we've said $x^{(i)} \in \mathbb{R}^d$; i.e. fixed dimension
- Idea: just use last character. But lose info
- Idea: use last m characters

"wha"

Xt	St
	wha
t	hat
_	at_

Xt	St
	wha
t	hat
_	at_
h	t_h

• Recall state machines:

X t	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states \mathcal{S}

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states \mathcal{S}
- Example:
 - All ordered m characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states \mathcal{S}
 - Set of possible inputs \mathcal{X}

- Example:
 - All ordered m characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}

- Example:
 - All ordered m characters
 - All characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states \mathcal{S}
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - m start characters

Xt	St
	wha
t	hat
_	at_
h	t_h

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - m start characters

X t	s _t
	$\wedge \wedge \wedge$
\wedge	$\wedge \wedge \wedge$
W	$\wedge \wedge_{W}$
h	^wh
а	wha
t	hat
	at

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - m start characters

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - *m* start characters

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - m start characters

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - *m* start characters

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - m start characters

X t	s _t
	$\wedge \wedge \wedge$
\wedge	$\wedge \wedge \wedge$
W	$\wedge \wedge_{W}$
h	^wh
а	wha
t	hat
	at

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state

- Example:
 - All ordered m characters
 - All characters
 - m start characters

t	X t	s t
0		$\wedge \wedge \wedge$
1	\wedge	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)

- Example:
 - All ordered m characters
 - All characters
 - m start characters

t	X t	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars

t	x_t	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6		at

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6		at

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars
 - All vectors of char probs

t	X t	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6		at_

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs
 - Output function g(s)

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6		at_

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last *m* chars
 - All vectors of char probs

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs
 - Output function g(s)

t	Xt	S t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars
 - All vectors of char probs
 - Multi-class linear classifier

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs
 - Output function g(s)

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars
 - All vectors of char probs
 - Multi-class linear classifier
- $x^{(1)}$: "^what happens to a dream deferred"

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs
 - Output function g(s)

t	Xt	S t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars
 - All vectors of char probs
 - Multi-class linear classifier
- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

- Recall state machines:
 - Set of possible states S
 - Set of possible inputs \mathcal{X}
 - Initial state
 - Transition function f(s,x)
 - Set of possible outputs
 - Output function g(s)

t	$\chi^{(1)}t$	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- Example:
 - All ordered m characters
 - All characters
 - m start characters
 - Update last m chars
 - All vectors of char probs
 - Multi-class linear classifier
- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	<u> </u>	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

 s_0

t	Xt	s _t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	<u> </u>	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

 s_0

 x_1

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6		at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6		at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	s _t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	s _t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	<u> </u>	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	S t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	<u> </u>	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	<u> </u>	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	Xt	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	X t	s _t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

t	$\boldsymbol{x_t}$	s t
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

- m: number of characters in the context
- v: number of characters in the alphabet

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

m: number of characters in the context

t	X t	St
0		$\wedge \wedge \wedge$
1	^	$\wedge \wedge \wedge$
2	W	$\wedge \wedge_{W}$
3	h	^wh
4	а	wha
5	t	hat
6	_	at_

- $x^{(1)}$: "^what happens to a dream deferred"
- $x^{(2)}$: "^if you can keep your head when all about you"
- $x^{(3)}$: "^you may write me down in history"

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

Example: Alphabet {0,1};
 state is last m = 3 characters

m: number of characters in the context

$$s_t = f(s_{t-1}, x_t) =$$

- m: number of characters in the context
- v: number of characters in the alphabet

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) =$$

m: number of characters in the context

m: number of characters in the context

$$s_t = f(s_{t-1}, x_t) = ? x_t + ? s_{t-1}$$

m: number of characters in the context

$$s_t = f(s_{t-1}, x_t) =$$
? $x_t +$? s_{t-1}

m: number of characters in the context

v: number of characters in the alphabet

$$s_t = f(s_{t-1}, x_t) =$$
 ? $x_t +$? s_{t-1}

6

m: number of characters in the context

$$s_t = f(s_{t-1}, x_t) =$$
? $x_t +$? s_{t-1} x_{t-1}

m: number of characters in the context

v: number of characters in the alphabet

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) =$$
? $x_t +$? s_{t-1} x_{t-1}

6

- *m*: number of characters in the context
- v: number of characters in the alphabet

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t +$$
 ? s_{t-1}

m: number of characters in the context

v: number of characters in the alphabet

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t +$$
 ? s_{t-1}

m: number of characters in the context

 v: number of characters in the alphabet

$$s_{t} = f(s_{t-1}, x_{t}) = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} x_{t} + \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} s_{t-1}$$

m: number of characters in the context

v: number of characters in the alphabet

$$s_{t} = f(s_{t-1}, x_{t}) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_{t} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

m: number of characters in the context

v: number of characters in the alphabet

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

context

v: number of characters in the

alphabet

characters in the

m: number of

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

6

• Example: Alphabet $\{0,1\}$; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t) =$$

m: number of characters in the context

 v: number of characters in the alphabet

contextv: number of characters in the

alphabet

characters in the

m: number of

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

= $f_2(W^o s_t + W_0^o)$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

2-class logistic regression m: number of characters in the context

 v: number of characters in the alphabet

6

characters in the context

output

context

v: number of

m: number of

 v: number of characters in the alphabet

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$
1 x 3

• Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$1 \times 3 \qquad 1 \times 1$$

2-class logistic regression m: number of characters in the context

• v: number of characters in the alphabet

characters in the contextv: number of

characters in the

alphabet

m: number of

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$
1 x 3 1 x 1

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$1 \times 3 \qquad 1 \times 1$$

v-class logistic regression m: number of characters in the context

 v: number of characters in the alphabet

6

characters in the contextv: number of

characters in the

alphabet

m: number of

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$1 \times 3$$

$$1 \times 1$$

m: number of characters in the context

• v: number of characters in the alphabet

• Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$| s_{t-1} |$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times 3 \qquad v \times 1$$

v-class logistic regression m: number of characters in the context

 v: number of characters in the alphabet

6

characters in the context

m: number of

• v: number of characters in the alphabet

• Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times 3 \qquad v \times 1$$

• Example: Alphabet $\{0,1\}$; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times 3$$

$$v \times 1$$

v-class logistic regression

m: number of characters in the context

 v: number of characters in the alphabet

6

• Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

v-class logistic regression m: number of characters in the context

 v: number of characters in the alphabet

m: number of characters in the context

 v: number of characters in the alphabet

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

m: number of characters in the context

 v: number of characters in the alphabet

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

- Example: Alphabet {0,1}; state is last m = 3 characters
 - $s_t = f(s_{t-1}, x_t)$ $p_t = g(s_t)$ v-class logistic regression

- *m*: number of characters in the context
- v: number of characters in the alphabet

$$= f_2(W^o s_t + W^o_0) \quad \text{logistic}$$

$$v \times m \quad v \times 1 \quad \text{regression}$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

Choose how to

features &

parameters)

predict label (given

 Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

P3 Recall: familiar pattern

- Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
- Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

 Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

v-class logistic regression

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- Choose parameters by trying to minimize the training loss

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\mathrm{elt}}(p_t^{(i)}, y_t^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^{q} L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^{q} L_{\text{seq}}(p^{(i)}, y^{(i)})$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

 Example: Alphabet {0,1}; state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} x_t + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} s_{t-1}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Choose how to

features &

parameters)

actual label)

predict label (given

(between guess &

Choose parameters

the training loss

by trying to minimize

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f(s_{t-1}, x_t) =$$

$$\begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix}$$

$$x_t +$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

 S_{t-1}

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};

state is last
$$m = 3$$
 characters

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$= f_2(W^o s_t + W_0^o)$$

 $s_t = f(s_{t-1}, x_t) =$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- Choose parameters by trying to minimize the training loss

$$\begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix} s_{t-1}$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

 $s_t = f(s_{t-1}, x_t) = \begin{vmatrix} w_2^{sx} & x_t \end{vmatrix}$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

- Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

state is last
$$m = 3$$
 characters

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$s_{t} = f(s_{t-1}, x_{t}) = \begin{bmatrix} w_{1}^{sx} \\ w_{2}^{sx} \\ w_{3}^{sx} \end{bmatrix} x_{t} + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix} s_{t-1}$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = \begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} x_t + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix}$$

P3 Recall: familiar pattern

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

 s_{t-1}

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = \begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} x_t + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix}$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$\begin{bmatrix} w_{0,1}^{ss} \\ w_{0,2}^{ss} \\ w_{0,3}^{ss} \end{bmatrix}$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_{t} = \begin{bmatrix} w_{1}^{sx} \\ w_{2}^{sx} \\ w_{3}^{sx} \end{bmatrix} x_{t} + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix}$$

P3 Recall: familiar pattern

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$\begin{bmatrix} w_{0,1}^{ss} \\ w_{0,2}^{ss} \\ w_{0,3}^{ss} \end{bmatrix}$$

$$p_{t} = g(s_{t})$$

$$= f_{2}(W^{o}s_{t} + W_{0}^{o})$$

$$= V \times M \quad V \times 1$$

$$L_{seq}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{elt}(p_{t}^{(i)}, y_{t}^{(i)})$$

$$p^{(i)} = R(x^{(i)}; W^{o}, W_{0}^{o})$$

$$J(W^{o}, W_{0}^{o}) = \sum_{i=1}^{q} L_{seq}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = \begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} x_t + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix}$$

- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$\begin{bmatrix} w_{0,1} \\ w_{0,2}^{ss} \\ w_{0,3}^{ss} \end{bmatrix}$$

$$p_{t} = g(s_{t})$$

$$= f_{2}(W^{o}s_{t} + W_{0}^{o})$$

$$= V \times M \quad V \times 1$$

$$L_{seq}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{elt}(p_{t}^{(i)}, y_{t}^{(i)})$$

$$p^{(i)} = R(x^{(i)}; W^{o}, W_{0}^{o})$$

$$J(W^{o}, W_{0}^{o}) = \sum_{i=1}^{q} L_{seq}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = \left[egin{array}{c|c} w_1^{sx} \ w_2^{sx} \ w_3^{sx} \ \end{array}
ight] egin{array}{c|c} w_1^{ss} & w_{12}^{ss} & w_{13}^{ss} \ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \ \end{array}
ight]$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$\begin{bmatrix} s_{t-1} + \begin{bmatrix} w_{0,1} \\ w_{0,2} \\ w_{0,3} \end{bmatrix}$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f_1 \left(\begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} x_t + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix} s_{t-1} + \begin{bmatrix} w_{0,1}^{ss} \\ w_{0,2}^{ss} \\ w_{0,3}^{ss} \end{bmatrix} \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

features & parameters)

- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

 $\mid x_t + \mid$

Example to the fet {0,1};
 state is la to the state is latered as a characters

$$s_t = f_1 \left(\begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f_1 \left(\begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} x_t + \begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix} s_{t-1} + \begin{bmatrix} w_{0,1}^{ss} \\ w_{0,2}^{ss} \\ w_{0,3}^{ss} \end{bmatrix} \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

features & parameters)

- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f_1 \left(\begin{bmatrix} w_1^{sx} \\ w_2^{sx} \\ w_3^{sx} \end{bmatrix} x_t + \begin{bmatrix} w_1^{sx} \\ w_3^{sx} \end{bmatrix} \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$\begin{bmatrix} w_{11}^{ss} & w_{12}^{ss} & w_{13}^{ss} \\ w_{21}^{ss} & w_{22}^{ss} & w_{23}^{ss} \\ w_{31}^{ss} & w_{32}^{ss} & w_{33}^{ss} \end{bmatrix} s_{t-1} + \begin{bmatrix} w_{0,1}^{ss} \\ w_{0,2}^{ss} \\ w_{0,3}^{ss} \end{bmatrix}$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

Example: Alphabet {0,1};
 state is last m = 3 characters

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

P3 Recall: familiar pattern

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \quad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W_0^{ss} \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W^o_0)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W^o, W_0^o)$$
$$J(W^o, W_0^o) = \sum_{i=1}^q L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
 - 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = R(x^{(i)}; W, W_0)$$
$$J(W, W_0) = \sum_{i=1}^{q} L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = \mathbb{R}(x^{(i)}; W, W_0)$$
$$J(W, W_0) = \sum_{i=1}^{q} L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$

$$p_t = g(s_t)$$

$$= f_2(W^o s_t + W_0^o)$$

$$v \times m \qquad v \times 1$$

- 1. Choose how to predict label (given features & parameters)
- Choose a loss (between guess & actual label)
- 3. Choose parameters by trying to minimize the training loss

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$
$$p^{(i)} = \text{RNN}(x^{(i)}; W, W_0)$$
$$J(W, W_0) = \sum_{i=1}^{q} L_{\text{seq}}(p^{(i)}, y^{(i)})$$

• Example: Alphabet of ℓ chars; state is last c chars $(m=c\ell)$ $s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$ $p_t = f_2 (W^o s_t + W^o_0)$

```
s_t : m \times 1
x_t : \ell \times 1
p_t : v \times 1
```

$$s_t = f_1 (W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0)$$
$$p_t = f_2 (W^o s_t + W^o_0)$$

$$p^{(i)} = \text{RNN}(x^{(i)}; W, W_0)$$

```
s_t : m \times 1

x_t : \ell \times 1

p_t : v \times 1
```

 s_0

 x_1

```
s_t: m \times 1
x_t: \ell \times 1
p_t: v \times 1
```

$$s_0 \longrightarrow \uparrow$$

 $egin{array}{c} s_t: m imes 1 \ x_t: \ell imes 1 \ p_t: v imes 1 \ \end{array}$

 $egin{array}{c} s_t: m imes 1 \ x_t: \ell imes 1 \ p_t: v imes 1 \end{array}$

• Example: Alphabet of ℓ chars; state is last c chars $(m = c\ell)$ $s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$

$$p_t = f_2(W^o s_t + W_0^o)$$

$$p^{(i)} = \text{RNN}(x^{(i)}; W, W_0)$$

 $\begin{vmatrix} s_t : m \times 1 \\ x_t : \ell \times 1 \\ p_t : v \times 1 \end{vmatrix}$

$$s_t = f_1 \left(W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0 \right)$$
$$p_t = f_2 (W^o s_t + W^o_0)$$

$$p^{(i)} = \text{RNN}(x^{(i)}; W, W_0)$$

$$s_t: m \times 1$$
 $x_t: \ell \times 1$
 $p_t: v \times 1$

• Example: Alphabet of ℓ chars; state is last c chars ($m = c\ell$)

$$s_t = f_1 \left(\underbrace{W^{sx} x_t + W^{ss} s_{t-1} + W^{ss}_0}_{0} \right)$$

$$p_t = f_2 \left(W^o s_t + W^o_0 \right)$$

$$z_t^1$$

 $p^{(i)} = \text{RNN}(x^{(i)}; W, W_0)$

$$egin{array}{c} s_t: m imes 1 \ x_t: \ell imes 1 \ p_t: v imes 1 \end{array}$$

$$s_{t} = f_{1} \left(\underbrace{W^{sx} x_{t} + W^{ss} s_{t-1} + W^{ss}_{0}} \right)$$

$$p_{t} = f_{2} \left(\underbrace{W^{o} s_{t} + W^{o}_{0}} \right) \underbrace{z_{t}^{1}} \qquad p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

 $\begin{vmatrix} s_t : m \times 1 \\ x_t : \ell \times 1 \\ p_t : v \times 1 \end{vmatrix}$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}} \underbrace{(W^{o}s_{t} + W^{o}_{0})}_{z_{t}^{2}} z_{t}^{1} \qquad p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

 $\begin{vmatrix} s_t : m \times 1 \\ x_t : \ell \times 1 \\ p_t : v \times 1 \end{vmatrix}$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{2t})} = p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{2t}) \xrightarrow{z_{t}^{2}} p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

 $s_t: m \times 1$ $x_t: \ell \times 1$ $p_t: v \times 1$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{10})} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{2t}) \xrightarrow{z_{t}^{2}} p^{(i)} = RNN(x^{(i)}; W, W_{0})$$

 $s_t: m \times 1$ $x_t: \ell \times 1$ $p_t: v \times 1$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{10})} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{z_{t}^{2}}) \qquad p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_t: m \times 1$$
 $x_t: \ell \times 1$
 $p_t: v \times 1$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0})}_{z_{t}^{2}} \underbrace{z_{t}^{1}}_{z_{t}^{2}} \qquad p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{z_{t}^{2}})} \qquad p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{10})} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{2t}) \xrightarrow{z_{t}^{2}} p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{10})} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{z_{t}^{2}}) \qquad p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})} \xrightarrow{z_{t}^{1}} p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{10})}$$

$$p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})}$$

$$p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0}) \xrightarrow{z_{t}^{2}} z_{t}^{1}$$

$$p^{(i)} = RNN(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})}$$

$$p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0}) \xrightarrow{z_{t}^{2}} z_{t}^{1}$$

$$p^{(i)} = RNN(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})}$$

$$p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})$$

$$z_{t}^{2}$$

$$p^{(i)} = RNN(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})}$$

$$p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0}) \xrightarrow{z_{t}^{2}} z_{t}^{1}$$

$$p^{(i)} = RNN(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})}$$

$$p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0}) \xrightarrow{z_{t}^{2}} p^{(i)} = RNN(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(\underbrace{W^{o}s_{t} + W^{o}_{0}}_{10})}$$

$$p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

$$s_{t} = f_{1} \underbrace{(W^{sx}x_{t} + W^{ss}s_{t-1} + W^{ss}_{0})}_{p_{t} = f_{2}(W^{o}s_{t} + W^{o}_{0})} \xrightarrow{z_{t}^{1}} p^{(i)} = \text{RNN}(x^{(i)}; W, W_{0})$$

Compare to:

- Compare to:
 - Feedforward neural networks

- Compare to:
 - Feedforward neural networks

- Compare to:
 - Feedforward neural networks

- Compare to:
 - Feedforward neural networks
 - Convolutional neural networks

- Compare to:
 - Feedforward neural networks
 - Convolutional neural networks
 - Reinforcement learning

 SGD: choose index *i* uniformly at random from data indices x_2 $L_{\text{seq}}(p^{(i)}, y^{(i)})$

$$L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}}$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}}$$

$$L_{\text{seq}}(p^{(i)}, y^{(i)})$$

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}}$$

 SGD: choose index *i* uniformly at random from data indices

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}}$$

 SGD: choose index *i* uniformly at random from data indices

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}} = \sum_{t=1}^{n^{(i)}} \frac{dL_{\text{elt}}(p_t^{(i)}, y_t^{(i)})}{dW^{sx}}$$

 SGD: choose index *i* uniformly at random from data indices

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$

$$L_t := L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}} = \sum_{t=1}^{n^{(i)}} \frac{dL_{\text{elt}}(p_t^{(i)}, y_t^{(i)})}{dW^{sx}}$$

• SGD: choose index *i* uniformly at random from data indices

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}} = \sum_{t=1}^{n^{(i)}} \frac{dL_{\text{elt}}(p_t^{(i)}, y_t^{(i)})}{dW^{sx}}$$

$$L_t := L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$

• Need: $\frac{dL_t}{dW^{sa}}$

12

• SGD: choose index *i* uniformly at random from data indices

$$L_{\text{seq}}(p^{(i)}, y^{(i)}) = \sum_{t=1}^{n^{(i)}} L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$

$$\frac{dL_{\text{seq}}(p^{(i)}, y^{(i)})}{dW^{sx}} = \sum_{t=1}^{n^{(i)}} \frac{dL_{\text{elt}}(p_t^{(i)}, y_t^{(i)})}{dW^{sx}}$$

$$L_t := L_{\text{elt}}(p_t^{(i)}, y_t^{(i)})$$

• Need: $\frac{dp_t^{(i)}}{dW^{sx}}$

12

