
Streaming Variational 
Bayes

Tamara Broderick, Nick Boyd, Andre Wibisono, 
Ashia C. Wilson, Michael I. Jordan



Overview
• Big Data inference generally non-Bayesian 

• Why Bayes? Complex models, coherent treatment 
of uncertainty, etc. 

• We deliver: SDA-Bayes, a framework for 
Streaming, Distributed, Asynchronous Bayesian 
inference 

• Experiments on streaming topic discovery 
(Wikipedia: 3.6M docs, Nature: 350K docs)



Overview
• Big Data inference generally non-Bayesian 

• Why Bayes? Complex models, coherent treatment 
of uncertainty, etc. 

• We deliver: SDA-Bayes, a framework for 
Streaming, Distributed, Asynchronous Bayesian 
inference 

• Experiments on streaming topic discovery 
(Wikipedia: 3.6M docs, Nature: 350K docs)



Overview
• Big Data inference generally non-Bayesian 

• Why Bayes? Complex models, coherent treatment 
of uncertainty, etc. 

• We deliver: SDA-Bayes, a framework for 
Streaming, Distributed, Asynchronous Bayesian 
inference 

• Experiments on streaming topic discovery 
(Wikipedia: 3.6M docs, Nature: 350K docs)



Overview
• Big Data inference generally non-Bayesian 

• Why Bayes? Complex models, coherent treatment 
of uncertainty, etc. 

• We deliver: SDA-Bayes, a framework for 
Streaming, Distributed, Asynchronous Bayesian 
inference 

• Experiments on streaming topic discovery 
(Wikipedia: 3.6M docs, Nature: 350K docs)



Overview
• Big Data inference generally non-Bayesian 

• Why Bayes? Complex models, coherent treatment 
of uncertainty, etc. 

• We deliver: SDA-Bayes, a framework for 
Streaming, Distributed, Asynchronous Bayesian 
inference 

• Experiments on streaming topic discovery 
(Wikipedia: 3.6M docs, Nature: 350K docs)



Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent



Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent



Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent



Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent



Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent



Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent

NOT STREAMING



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



A

x

p(✓)prior

data

q(✓) ⇡ p(✓ | x) posterior

batch alg

• Posterior update is iterative: 
!

• Choose any posterior approximation 𝐴: 

!

• Iterate approximation if matches prior form: 

SDA-Bayes: Streaming

p(✓ | x
old

, x

new

) / p(✓ | x
old

) · p(x
new

| ✓)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Can calculate posteriors in parallel and combine with 
Bayes’ Rule: 

!

!

• Could substitute approximation found by 𝐴 instead 

• Update is just addition if prior and approximate posterior 
are in same exponential family: 

SDA-Bayes: Distributed

p(✓ | x1, . . . , xN )

/
"

NY

n=1

p(xn | ✓)
#

p(✓) /
"

NY

n=1

p(✓ | xn) p(✓)
�1

#
p(✓)

p(✓ | x1, . . . , xN ) ⇡ q(✓) / exp

("
⇠0 +

NX

n=1

(⇠n � ⇠0)

#
· T (✓)

)



• Each worker iterates: 

!

!

!

• Each time the master receives       from a worker, it 
updates synchronously: 

SDA-Bayes: Asynchronous

1. Collect a new data point x.

2. Copy the master posterior parameter locally: ⇠

(local)  ⇠

(post)

3. Compute the local approximate posterior parameter ⇠ usingA with ⇠

(local)

as the prior parameter

4. Return �⇠ := ⇠ � ⇠

(local)

�⇠

⇠(post)  ⇠(post) +�⇠



Case Study: LDA

• Topic: theme potentially shared by multiple 
documents 

• Latent Dirichlet Allocation (LDA): a topic model 

• (Unsupervised) inference problem: discover the 
topics and identify which topics occur in which 
documents



Case Study: LDA

• Topic: theme potentially shared by multiple 
documents 

• Latent Dirichlet Allocation (LDA): a topic model 

• (Unsupervised) inference problem: discover the 
topics and identify which topics occur in which 
documents



Case Study: LDA

• Topic: theme potentially shared by multiple 
documents 

• Latent Dirichlet Allocation (LDA): a topic model 

• (Unsupervised) inference problem: discover the 
topics and identify which topics occur in which 
documents



Case Study: LDA

• Topic: theme potentially shared by multiple 
documents 

• Latent Dirichlet Allocation (LDA): a topic model 

• (Unsupervised) inference problem: discover the 
topics and identify which topics occur in which 
documents



Experimental Setup
• SDA-Bayes with batch VB for 𝐴 vs. SVI (not 

designed for streaming) 

• Training: 3.6M Wikipedia, 350K Nature 

• Testing: 10K Wikipedia, 1K Nature 

• Performance measure: log predictive probability 
on held-out words in held-out testing documents; 
higher is better



Experimental Setup
• SDA-Bayes with batch VB for 𝐴 vs. SVI (not 

designed for streaming) 

• Training: 3.6M Wikipedia, 350K Nature 

• Testing: 10K Wikipedia, 1K Nature 

• Performance measure: log predictive probability 
on held-out words in held-out testing documents; 
higher is better



Experimental Setup
• SDA-Bayes with batch VB for 𝐴 vs. SVI (not 

designed for streaming) 

• Training: 3.6M Wikipedia, 350K Nature 

• Testing: 10K Wikipedia, 1K Nature 

• Performance measure: log predictive probability 
on held-out words in held-out testing documents; 
higher is better



Experimental Setup
• SDA-Bayes with batch VB for 𝐴 vs. SVI (not 

designed for streaming) 

• Training: 3.6M Wikipedia, 350K Nature 

• Testing: 10K Wikipedia, 1K Nature 

• Performance measure: log predictive probability 
on held-out words in held-out testing documents; 
higher is better



Results
• SDA-Bayes (streaming) as good as SVI (not 

streaming); 32 threads and 1 thread shown



Results
• More threads in SDA improves runtime and 

performance



Results
• More threads in SDA improves runtime and 

performance



Results
• SVI is sensitive to the pre-specified number of 

documents D



Further information
• Streaming, distributed Bayesian learning without 

performance loss 

• Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., 
and Jordan, M. I. Streaming variational Bayes. NIPS 
2013 

!

!

• Code and slides at www.tamarabroderick.com


