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Overview
• Big Data inference generally non-Bayesian 

• Why Bayes? Complex models, coherent treatment 
of uncertainty, etc. 

• We deliver: SDA-Bayes, a framework for 
Streaming, Distributed, Asynchronous Bayesian 
inference 

• Experiments on streaming topic discovery 
(Wikipedia: 3.6M docs, Nature: 350K docs)
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Background
• Posterior: belief about unobserved parameters 𝜃 

after observing data 𝑥 

• Variational Bayes (VB): approximate posterior by 
solving optimization problem (min KL divergence) 

• Batch VB: solves VB using coordinate descent 

• Stochastic Variational Inference (SVI): solves VB 
using stochastic gradient descent
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• Each worker iterates: 

!

!

!

• Each time the master receives       from a worker, it 
updates synchronously: 

SDA-Bayes: Asynchronous

1. Collect a new data point x.

2. Copy the master posterior parameter locally: ⇠

(local)  ⇠

(post)

3. Compute the local approximate posterior parameter ⇠ usingA with ⇠

(local)

as the prior parameter

4. Return �⇠ := ⇠ � ⇠

(local)

�⇠

⇠(post)  ⇠(post) +�⇠
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topics and identify which topics occur in which 
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on held-out words in held-out testing documents; 
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Results
• SDA-Bayes (streaming) as good as SVI (not 

streaming); 32 threads and 1 thread shown
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Results
• SVI is sensitive to the pre-specified number of 

documents D



Further information
• Streaming, distributed Bayesian learning without 

performance loss 

• Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., 
and Jordan, M. I. Streaming variational Bayes. NIPS 
2013 

!

!

• Code and slides at www.tamarabroderick.com


