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The William Randolph Hearst will give to Lincoln Center, Metropoli-

tan Opera Co., New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act
every bit as important as our traditional areas of in health, medical education

and the social Hearst Randolph A. Hearst said Monday in
the Lincoln Center’s share will be for its new which
will young artists and new The Metropolitan Opera Co. and
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The Hearst a leading supporter
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the performing arts are taught, will get

of the Lincoln Center Consolidated Corporate
donation, too.
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The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, aleading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
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Approximate Bayesian Inference
» Gold standard: Markov Chain Monte Carlo (MCMC) Doucet |
* Eventually accurate but can be slow

2017]

p(0|y) Instead: an optimization
approach

CLOSE  Approximate posterior
with g

q" = argmin . f(q(-), p(-|y))

» Variational Bayes (VB): fis Kullback-Leibler divergence

KL(q()|lp(-ly))

* VB practical success: point estimates and prediction, fast,
streaming, distributed (3.6M Wikipedia, 350K Nature)

4 [Broderick, Boyd, Wibisono, Wilson, Jordan 2013]
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Choose “NICE” distributions
p(0ly)  Mean-field variational Bayes

CLOSE (MPVE) J
QMFVB = {q 1 q(0) = H (Jj(ej)}

o Often also exponential family

 Nota modeling assumption
_MFVB appfrox

Now we have an optimization

problem; how to solve it? |
 One option: Coordinate
descentin qi,...,qy

[Bishop 2006]
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Approximate Bayesian inference

se ¢ to approximate p(-|y

ptimization
¢" = argmingeq f(q(), p(+[y))

Variational Bayes
q" = argmin, o K L(q(-)[|p(-|y))

ean-field variational Bayes
¢* = argmingeqg,,. s K L(GC)[|p(-[y))

Coordinate descent
e Stochastic variational inference (SVI) (Hoffman et a12613]
e Automatic differentiation variatiopal
iInference (ADVI) [Kucukelbir et al 2
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* Click-through conversion prediction

* Q: Will a customer (e.g.) buy a product after clicking?
* Q: How predictive of conversion are different features?
* Logistic GLMM
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45 minutes mn ] ®| &
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Criteo Online Ads Experiment

* Click-through conversion prediction

* Q: Will a customer (e.g.) buy a product after clicking?

* Q: How predictive of conversion are different features?

* Logistic GLMM; N = 61,895 subset to compare to MCMC

11 |Giordano, Broderick, Meager, Huggins, Jordan 2016; Giordano, Broderick, Jordan 2018]
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* Jopic discovery

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

[Blei et al 2003]
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Microcredit effect Standard deviations
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Approximate Bayesian inference

se ¢ to approximate p(-|y

ptimization
q" = argmingcq f(q(-), p(-[y))

Variational Bayes
q" = argmin, o K L(q(-)[|p(-|y))

How MVariational Bayes
deep is ¢" = argmingcq, ., KL(q(-)|[p(-]y))

\ the Coordinate descent

. e Stochastic variational inference (SVI) (Hoffman et a12613]

ISSUue? |\ . Automatic differentiation variatiopa

QA\DVI) [Kucukelbir et al 2
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S it just MFVB?

* Jurner, Sahani (2011)
showed (empirically)
can have strictly larger
NICE set but worse
mean & variance
estimates

e Jakeaway: A smaller KL does not imply
better mean and variance estimates

e Exercise: show this
19
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KL value
isn’t free

N iteration iteration



Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
q" = argmingeq f(4(+) p(+[y))

Variational Bayes
q" = argmin, o K L(q(-)[|p(-|y))

How m variational Bayes

deep is q" = argmianQMFVBKL(q(.)‘|p(.‘y))
\

the Algorithm
issue? @men@ Gaussian example
\ was exact

4




Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
¢* = argmin o f(q(-), p(-|y))

Variational Bayes
¢ = argmin, o K L(q(-)[[p(-|y))

How m variational Bayes

deep is q" = argmianQMFVBKL(q(.)‘|p(.‘y))
\

the Algorithm\\
issue? @men@ Gaussian example
\ was exact

4




Roadmap

 Bayes & Approximate Bayes review
 What Is:

* Variational Bayes (VB)

 Mean-field variational Bayes (MFVB)
e Why use MFVB?

When can we trust MFVB?




Roadmap

 Bayes & Approximate Bayes review
 What Is:

* Variational Bayes (VB)

 Mean-field variational Bayes (MFVB)
e Why use MFVB?

When can we trust MEVEB"?




Roadmap

 Bayes & Approximate Bayes review
 What Is:

* Variational Bayes (VB)

 Mean-field variational Bayes (MFVB)
e Why use MFVB?

When can we trust VB




Roadmap

 Bayes & Approximate Bayes review
 What Is:

* Variational Bayes (VB)

 Mean-field variational Bayes (MFVB)
e Why use MFVB?

When can we trust VB?




Roadmap

 Bayes & Approximate Bayes review
 What Is:

* Variational Bayes (VB)

 Mean-field variational Bayes (MFVB)
e Why use MFVB?
 When can we trust VB?
 \Where do we go from here?




L atent Dirichlet Allocation

LDA

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

[Blei et al 2003]
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 cf. KL, ELBO

[Gorham, Mackey 2015,

2017; Chwialkowski,

Strathmann, Gretton

2016: Jitkrittum et al 0
2017; Talts et al 2018;

Yao et al 2018, etc.]

— “Yes, but did it work? Evaluating variational inference” ICML 2018

Alternative divergences:

Time & accuracy

[Huggins, Kasprzak, Campbell, Broderick,
2018]

iteration iteration

Ximate posterior

_ [Giordano, ariational Bayes
CorreC’[IOﬂS Broderick, Jordan :
2018] Vean-field

Theoretical guarantees on variational Bayes

iNita- ' [Huggins, Campbell,
finite-data quality Zugome. -am

Campbell, Broderick
2018, 2019]




What to read next

Textbooks and Reviews

Bishop. Pattern Recognition and Machine Learning, Ch 10. 2006.
Blei, Kucukelbir, McAuliffe. Variational inference: A review for statisticians, JASA 2016.
MacKay. Information Theory, Inference, and Learning Algorithms, Ch 33. 2003.

Murphy. Machine Learning: A Probabilistic Perspective, Ch 21. 2012.
Ormerod, Wand. Explaining Variational Approximations. Amer Stat 2010.

Turner, Sahani. Two problems with variational expectation maximisation for time-series
models. In Bayesian Time Series Models, 2011.

Wainwright, Jordan. Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 2008.

Our Experiments

RJ Giordano, T Broderick, and M| Jordan. Linear response methods for accurate
covariance estimates from mean field variational Bayes. NeurlPS 2015.

RJ Giordano, T Broderick, R Meager, J Huggins, and M| Jordan. Fast robustness
quantification with variational Bayes. ICML Data4Good Workshop 2016.

RJ Giordano, T Broderick, and M| Jordan. Covariances, robustness, and variational
Bayes. Journal of Machine Learning Research, 2018.

J Huggins, M Kasprzak, T Campbell, T Broderick. Practical bounds on the error of
Bayesian posterior approximations: A nonasymptotic approach, 2018. ArXiv:
1809.09505.
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 Proposal: efficient data summaries for fast, automated,
1 approximations with error bounds for finite data
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exp(L(0))
exp(Ln(0))

Ln

Yn

* need to consider (residual) error direction
e sparse optimization
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Poisson regression (simulated)

10K pts; general inference

Uniform
subsampling e
Importance y/
sampling o
Frank-Wolfe / e 7.
— S —— B ety

M =10 M =100 M = 1000
13



Real data experiments

10~

ey Uniform
g 10 : subsampling
Z o .
s : Frank Wolfe
3 10 \ ,
lower £ S S coresets
error '
% 10-2 l
E |
%l() ’ |
g1() '
. |
|
1

Data sets include:
0.1 0.5 . .
Relative Total CPU Time o PhISh I ng

sl uses  Chemical reactivity

less total time Bicycle trips
* Airport delays

14 [Campbell, Broderick 2019]



Real data experiments

= -GIGA —FW —RN[l) - U n Iform .

104 Q\ subsampling

w k Frank Wolfe
lower o R coresets
error : \\ ]

— GIGA coresets

Normalized Fisher Information Distance

Data sets include:

-
O
H 1 —  e—  — —  —  — e—  — — | e— | e— — | e—

Re/auve Total CPU Trme [ Ph|Sh|ng
sl uses  Chemical reactivity
less total time * Bicycle trips
* Airport delays

14 [Campbell, Broderick 2019, 2018]



Roadmap

* The “core” of the data set

* Uniform data subsampling isn't enough
* Importance sampling for “coresets”

e Optimization for “coresets”




Roadmap

* The “core” of the data set

* Uniform data subsampling isn't enough
* Importance sampling for “coresets”

e Optimization for “coresets”

* Approximate sufficient statistics




Data summarization

15



Data summarization

* Exponential family likelihood

15



Data summarization

 Exponential famllyhkehhood Sufficient statistics

p(Y1:~N|T1:N, 0) H eXp - 1(0)]

15



Data summarization

 Exponential fam|lyl|kel|hood Sufficient statistics

p(y1:n|T1:N, 0) H eXp - 1(0)]

- {Z

15



Data summarization

 Exponential famllyhkehhood Sufficient statistics

p(y1:n|T1:N, 0) H eXp - 1(0)]

* Scalable, single-pass, streaming, distributed,
complementary to MCMC

15



Data summarization

 Exponential famllyhkehhood Sufficient statistics

p(y1.n|x1:N, 0)

H exp - n(6),

* Scalable, single-pass, streaming, distributed,
MCMC

complementary to
o But. Often no simp

15

e Su

fficient statistics

n(0)




Data summarization

e Exponential family likelihood . s g
P y fe Sufficient statistics

p(yi:n|T1:N,0) = H exp [L(Yn, Tn) - 7(0)]

{Z T'(yn, Cl’/'n)} -1(0)

* Scalable, single-pass, streaming, distributed,
complementary to MCMC

e But: Often no simple sufficient statistics

 E.g. Bayesian logistic regression; GL]\MS; "deeper’ models
1

(—YnTy - 0)

= exp

+ Likelihood p(yin|zin,0) = |] 1 + exp

n=1

15



Data summarization

e Exponential family likelihood . s g
P y fe Sufficient statistics
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* Scalable, single-pass, streaming, distributed,
complementary to MCMC

e But: Often no simple sufficient statistics

 E.g. Bayesian logistic regression; GL]\MS; "deeper’ models
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