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Roadmap

e Bayesian modeling and inference
* (Gaussian process model
* Popular version using a squared exponential kernel
e (Gaussian process inference
* Prediction & uncertainty quantification
* Observation noise
* What uncertainty are we quantitying”?
 What can go wrong?
* Bayesian optimization

e (30als:

e Learn the mechanism behind standard GPs to
identify benefits and pittalls (also in BayesOpt)

* Learn the skills to be responsible users of standard
4 GPs (transterable to other ML/AI methods)
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e About 95% of the mass falls within 2 standard 'demo]
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e f Y ~N(0,1),then Y 4+ pu ~ N(u,1)
oY ~ N(0,0°)
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We just drew random functions from a type of Gaussian
process that is very commonly used in practicel



(Gaussian processes

10



(Gaussian processes

* Definition: “A Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian
d iStI’i butiOﬂ _ ’ [Rasmussen and Williams 2006; a much much older idea!]

10



(Gaussian processes

* Definition: “A Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian
d iStI’i butiOﬂ _ ’ [Rasmussen and Williams 2006; a much much older idea!]

e E.g.the function f(x) is a collection indexed by input x

10



(Gaussian processes

* Definition: “A Gaussian process is a collection of random
variables, any finite number of which have a joint Gaussian
distribution.” [Rasmussen and Williams 2006; a much much older idea!]

e E.g.the function f(x) is a collection indexed by input x
* |tis specitied by its mean function and covariance function:

f~GP(m,k)
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