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o K(X,X))is the NxM matrix with (n,m) entry k(z(™, 2~ +m)
* Then by our model

F(X) K(X,X) K(X,X')
x| N <°’ K(X', X) K(X',X'>_>

e The conditional satisfies f(X")|f(X), X, X" ~ N with
e Mean: K(X', X)K(X, X)) ' f(X)

» Covariance: K(X', X)) - K(X', X)K(X,X) 'K(X, X’

 We'll infer {X') given our simulated data; recall we're using

13 k(z,2") = oc? exp(—3(z — 2/)?),0 =1 [demo]
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Closer look at the uncertainty interval

y

x data
— f(x) best guess
(x) 95% interval

e Draw random fconditional
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on the training data

e Under GP, f(2)|f(X), X,z
at a point x’I1s marginally
(Gaussian

 [he green line at point x'Is
the mean of that Gaussian

 The green interval at that
point: mean +/- 2 std devs
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