

Gaussian Processes for Regression: Models, Algorithms, and Applications, Day 2

Tamara Broderick

Associate Professor MIT

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

- Bayesian modeling and inference
- Gaussian process model
 - Popular version using a squared exponential kernel
- Gaussian process inference
 - Prediction & uncertainty quantification
- Observation noise
- What uncertainty are we quantifying?
- What can go wrong?
- Bayesian optimization
- Goals:
 - Learn the mechanism behind standard GPs to identify benefits and pitfalls (also in BayesOpt)
 - Learn the skills to be responsible users of standard GPs (transferable to other ML/Al methods)

A Bayesian approach

Given the data we've seen, what do we know about the underlying function?

A (statistical) model that can generate functions and data of interest

• Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian

• Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian

- Under GP, f(x')|f(X), X, x'at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian

- Under GP, f(x')|f(X), X, x'at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

- Under GP, f(x')|f(X), X, x'at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

 Draw random f conditional on the training data

 Draw random f conditional on the training data

- Under GP, f(x')|f(X), X, x'at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

 Draw random f conditional on the training data

- Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

- Draw random f conditional on the training data
- Probability the draw is in the interval at x' is

- Under GP, f(x')|f(X), X, x'at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

- Draw random f conditional on the training data
- Probability the draw is in the interval at x' is ~95%

- Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

- Draw random f conditional on the training data
- Probability the draw is in the interval at x' is ~95%
- Probability that all points on f fall within the green interval across the whole plot
 2

- Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

- Draw random f conditional on the training data
- Probability the draw is in the interval at x' is ~95%
- Probability that all points on f fall within the green interval across the whole plot will generally not be ~95%

- Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

- Draw random f conditional on the training data
- Probability the draw is in the interval at x' is ~95%
- Probability that all points on f fall within the green interval across the whole plot will generally not be ~95%

- Under GP, f(x')|f(X), X, x' at a point x' is marginally Gaussian
- The green line at point x' is the mean of that Gaussian
- The green interval at that point: mean +/- 2 std devs

 What if we happened to measure our data on a different scale?

- What if we happened to measure our data on a different scale?
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What if we happened to measure our data on a different scale? [demo]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

What do we expect from the scale of f(x) a priori?

- What if we happened to measure our data on a different scale? [demo]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in \mathbb{R}$?

- What if we happened to measure our data on a different scale? [demo]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2, 2)$

- What if we happened to measure our data on a different scale? [demo]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data

- What if we happened to measure our data on a different scale?
 [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data

- What if we happened to measure our data on a different scale? [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data
- What counts as "close" in x?

- What if we happened to measure our data on a different scale? [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data
- What counts as "close" in x?

- What if we happened to measure our data on a different scale? [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data
- What counts as "close" in x?

$$\exp(-\frac{1}{2}2^2) \approx 0.14 \quad \exp(-\frac{1}{2}3^2) \approx 0.011 \quad \exp(-\frac{1}{2}4^2) \approx 0.00034$$

- What if we happened to measure our data on a different scale? [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data
- What counts as "close" in x?

$$\exp(-\frac{1}{2}2^2) \approx 0.14$$
 $\exp(-\frac{1}{2}3^2) \approx 0.011$ $\exp(-\frac{1}{2}4^2) \approx 0.00034$

• What can we do to handle different x and f(x) scales?

- What if we happened to measure our data on a different scale? [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data
- What counts as "close" in x?

$$\exp(-\frac{1}{2}2^2) \approx 0.14$$
 $\exp(-\frac{1}{2}3^2) \approx 0.011$ $\exp(-\frac{1}{2}4^2) \approx 0.00034$

- What can we do to handle different x and f(x) scales?
 - Normalization in y can help; in x, can still be hiccups

- What if we happened to measure our data on a different scale? [demo1, demo2]
- We've been using this particular kernel:

$$k(x, x') = \sigma^2 \exp(-\frac{1}{2}(x - x')^2), \sigma = 1$$

- What do we expect from the scale of f(x) a priori?
 - At one x, with ~95% probability a priori, $f(x) \in (-2,2)$
 - Marginal variance cannot increase with data
- What counts as "close" in x?

$$\exp(-\frac{1}{2}2^2) \approx 0.14$$
 $\exp(-\frac{1}{2}3^2) \approx 0.011$ $\exp(-\frac{1}{2}4^2) \approx 0.00034$

- What can we do to handle different x and f(x) scales?
 - Normalization in y can help; in x, can still be hiccups

 A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

• Parameters (here, f) parametrize the distribution of the data. If we knew them, we could generate the data.

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- *Parameters* (here, *f*) parametrize the distribution of the data. If we knew them, we could generate the data.
 - GPs: nonparametric model: infinite # of latent params

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- Parameters (here, f) parametrize the distribution of the data. If we knew them, we could generate the data.
 - GPs: nonparametric model: infinite # of latent params
- Hyperparameters parametrize the distribution of the parameters. If known, we could generate the parameters.

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- Parameters (here, f) parametrize the distribution of the data. If we knew them, we could generate the data.
 - GPs: nonparametric model: infinite # of latent params
- Hyperparameters parametrize the distribution of the parameters. If known, we could generate the parameters.
- Algorithm:

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- Parameters (here, f) parametrize the distribution of the data. If we knew them, we could generate the data.
 - GPs: nonparametric model: infinite # of latent params
- *Hyperparameters* parametrize the distribution of the parameters. If known, we could generate the parameters.
- Algorithm:
 - Fit a value for the hyperparameters using the data.

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- Parameters (here, f) parametrize the distribution of the data. If we knew them, we could generate the data.
 - GPs: nonparametric model: infinite # of latent params
- Hyperparameters parametrize the distribution of the parameters. If known, we could generate the parameters.
- Algorithm:
 - Fit a value for the hyperparameters using the data.
 - Given those values, now compute and report the mean and uncertainty intervals.

- A common option in practice and in software is to fit the hyperparameters of a more general squared exponential kernel from data
 - More general form of the squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_d - x_d')^2}{\ell_d^2})$$
 signal variance

- Parameters (here, f) parametrize the distribution of the data. If we knew them, we could generate the data.
 - GPs: nonparametric model: infinite # of latent params
- Hyperparameters parametrize the distribution of the parameters. If known, we could generate the parameters.
- Algorithm:
 - Fit a value for the hyperparameters using the data.
 - Given those values, now compute and report the mean and uncertainty intervals. [demo1,2,3]

So far we've been assuming that we observed f(x) directly

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

• We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

• We observe $\{(\mathbf{x}^{(n)},y^{(n)})\}_{n=1}^N$ and want to learn the latent f [demo1]

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed

Why?

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
 - So the mean of $y^{(n)}$ is

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
 - So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
 - So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and

$$Cov(y^{(n)}, y^{(n')}) =$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and

$$Cov(y^{(n)}, y^{(n')}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(n')}) + \tau^2 \mathbf{1}\{n = n'\}$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $Cov(y^{(n)}, y^{(n')}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(n')}) + \tau^2 \mathbf{1}\{n = n'\}$ indices, not x's?

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m, k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0, \tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $Cov(y^{(n)}, y^{(n')}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(n')}) + \tau^2 \mathbf{1} \{ n = n' \}$ indices, not x's?

• Before:
$$\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1|
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $Cov(y^{(n)}, y^{(n')}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(n')}) + \tau^2 \mathbf{1} \{ n = n' \}$ indices, not x's?

• Before:
$$\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

$$\bullet \ \ \mathsf{Now:} \quad \begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix}$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1]
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?

• Before:
$$\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

$$\bullet \quad \text{Now:} \quad \begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1]
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?

• Before:
$$\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

$$\bullet \quad \text{Now:} \quad \begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I \\ K(X',X) \end{bmatrix} \begin{array}{c} K(X,X') \\ K(X',X') \end{bmatrix} \right)$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f|demo1]
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?

• Before:
$$\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

$$\bullet \quad \text{Now:} \quad \begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ and want to learn the latent f[demo1]
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?
 - Before: $\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$
 - Now: $\begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$

What if we put y here instead?

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ and want to learn the latent f[demo1]
- The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?

• Before:
$$\begin{bmatrix} f(X) \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

$$\bullet \quad \text{Now:} \quad \begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$$

[demo2, demo3]

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise:

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$$

- We observe $\{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$ and want to learn the latent f
- |demo1] • The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?
 - $\bullet \ \, \text{Before:} \ \, \left[\begin{matrix} f(X) \\ f(X') \end{matrix} \right] \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$
 - $\bullet \quad \text{Now:} \quad \begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$

Can you state a non-trivial lower bound [demo2, demo3] on the marginal variance of a test \sqrt{m} ?

Even when observations are Observation noise "perfect," use a (very small)

- So far we've been assuming that we observed f(x) directly
- But often the actual observation y has additional noise: $f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0,\tau^2)$

$$f \sim \mathcal{GP}(m,k), y^{(n)} \sim f(\mathbf{x}^{(n)}) + \epsilon^{(n)}, \epsilon^{(n)} \stackrel{iid}{\sim} \mathcal{N}(0, \tau^2)$$

- We observe $\{(\mathbf{x}^{(n)},y^{(n)})\}_{n=1}^N$ and want to learn the latent f
- [demo1] • The y's are multivariate-Gaussian-distributed
 - Note: the sum of independent Gaussians is a Gaussian with means summed and covariances summed
- So the mean of $y^{(n)}$ is $m(\mathbf{x}^{(n)})$ and Why compare $\mathrm{Cov}(y^{(n)},y^{(n')})=k(\mathbf{x}^{(n)},\mathbf{x}^{(n')})+\tau^2\mathbf{1}\{n=n'\}$ indices, not x's?
 - $\bullet \ \, \text{Before:} \ \, \left[\begin{matrix} f(X) \\ f(X') \end{matrix} \right] \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$
 - Now: $\begin{bmatrix} y^{(1:N)} \\ f(X') \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \tau^2 I & K(X,X') \\ K(X',X) & K(X',X') \end{bmatrix} \right)$

Can you state a non-trivial lower bound [demo2, demo3] on the marginal variance of a test $y^{(m)}$?