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e Bayesian modeling and inference
* (Gaussian process model
* Popular version using a squared exponential kernel
e (Gaussian process inference
* Prediction & uncertainty quantification
* Observation noise
* What uncertainty are we quantitying”?
 What can go wrong?
* Bayesian optimization

e (30als:

e Learn the mechanism behind standard GPs to
identify benefits and pittalls (also in BayesOpt)

* Learn the skills to be responsible users of standard
4 GPs (transterable to other ML/AI methods)




A Bayesian approach

* p(unknowns | data) x p(data | unknowns) p(unknowns)

C Given the data we've A (statistical) modelB
seen, what do we that can generate
know about the functions and data
underlying function of interest

x data
— f(x) best guess
(X) 95% interval
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. We observe {(x\™), y"))}_, and want to learn the latent
» The y's are multivariate-Gaussian-distributed [demoT ]
* Note: the sum of independent Gaussians is a Gaussian
with means summed and covariances summed
e So the mean of ¥ is m(x™) and
Cov(y™,y™)) = k(x™,x™)) + 721{n = n'}

: [Fx) K(X,X)  K(X,X')
Before: F(XT) NN( KX, X) KX, X') >

. [N K(X, X))+ K(X,X')
Now: _?(X’)_ NN< K(X', X) K(leX)_>

Can you state a non-trivial lower bounad
17 on the marqginal variance of a test yAm? [demo2, demo3]




Observation noise

* SO far we've been assuming that we observed f(x) directly
e But often the actual observation y has additional noise:

f o~ GP(m, k), y™ ~ F(x™) 4 ) () % 1d N (0, 72)
. We observe {(x\™), y"))}_, and want to learn the latent
» The y's are multivariate-Gaussian-distributed [demoT ]
* Note: the sum of independent Gaussians is a Gaussian
with means summed and covariances summed
e So the mean of ¥ is m(x™) and
Cov(y™,y™)) = k(x™,x™)) + 721{n = n'}

: [Fx) K(X,X)  K(X,X')
Before: F(XT) NN( KX, X) KX, X') >

. [N K(X, X))+ K(X,X')
Now: _?’(X’)_ NN< K(X', X) K(XlaX)_>

Can you state a non-trivial lower bounad
17 on the marginal variance of a test m? [demo2, demo3]




