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uared exponential kernel:

e Data points that are more than a handful of length scales

from other data points will revert to prior behavior

Note: extrapolation isn’'t a special issue unique to GPs. It's a
fundamentally hard problem for all data analysis methods
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 \WWhen you have domai

might be able to use it

* When you're letting a

n knowledge of a system, you
to extrapolate

machine learning method use its

defaults, it's making assumptions. Do you know what
those assumptions are?
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Some high points of what got cut for time

 We ran out of time! Here are some high-level summary

22

points beyond what we

discussed together:

* [here are other challenges with many inputs, both
conceptual and practical
* Running time for GP regression can be an issue with a

large number of train

INg data points

* |n particular, the matrix inverse can be expensive
* There are incredibly many papers about fast
approximations to the exact Gaussian process

 Each approxima
Bayesian optimization |
Gaussian processes fo

lon has pros and cons
nherits many of the pros and cons of

" regression

* EXxercise: once you learn about Bayesian optimization,
think about how the pros and cons we discussed together

might translate there



Roadmap

e Bayesian modeling and inference
* (Gaussian process model
* Popular version using a squared exponential kernel
e (Gaussian process inference
* Prediction & uncertainty quantification
* Observation noise
* What uncertainty are we quantitying”?
 What can go wrong?
* Bayesian optimization

e (30als:

e Learn the mechanism behind standard GPs to
identify benefits and pittalls (also in BayesOpt)

* Learn the skills to be responsible users of standard
GPs (transferable to other ML/Al methods)




