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• We ran out of time! Here are some high-level summary 
points beyond what we discussed together: 
• There are other challenges with many inputs, both 

conceptual and practical 
• Running time for GP regression can be an issue with a 

large number of training data points 
• In particular, the matrix inverse can be expensive 
• There are incredibly many papers about fast 

approximations to the exact Gaussian process 
• Each approximation has pros and cons 

• Bayesian optimization inherits many of the pros and cons of 
Gaussian processes for regression 
• Exercise: once you learn about Bayesian optimization, 

think about how the pros and cons we discussed together 
might translate there

Some high points of what got cut for time
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Roadmap
• Bayesian modeling and inference 
• Gaussian process model 

• Popular version using a squared exponential kernel 
• Gaussian process inference 

• Prediction & uncertainty quantification 
• Observation noise 
• What uncertainty are we quantifying? 
• What can go wrong? 
• Bayesian optimization
• Goals: 

• Learn the mechanism behind standard GPs to 
identify benefits and pitfalls (also in BayesOpt) 

• Learn the skills to be responsible users of standard 
GPs (transferable to other ML/AI methods)


