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• E.g. (1) conclude microcredit helps, then (2) distribute it 

• Might worry about generalization if replicability fails: E.g. in 
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• Of 53 hematology/oncology papers, 6 had same result 
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• 2 (of many) causes: iron deficiency, genetic disorders 
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• If I run a randomized controlled trial, doesn’t that guarantee 

any benefit I find will generalize? Job placement assistance 
• Concluded benefits at 8 months, gone by 12 months 
• Benefits seemed to be at expense of other workers 

• Mitigations: domain expertise, context, team science 
• Importance of longer-range/larger-scale experiments 
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[Charles+ 11; Rappaport+ 17; Wieringa+ 16, www.mayoclinic.org/diseases-conditions/anemia/]
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• Imagine a world where no one benefits from microcredit 
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• In US, household net worth mean ~$1M, median ~$193K 
• Linear models + ordinary least squares are standard in 

many areas of science & social science 
• (Typically) closed-form, unique solution. Well-vetted 

code, theory. Relatively easy to understand 
• Removing outliers isn’t a panacea: E.g. ozone depletion 

first flagged as outliers to NASA (then checked)

[Federal Reserve Board’s Division of Research and Statistics, 2023] 

[Earth Observatory, NASA, 2001; Pukelsheim, 1990]9
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• Bin Yu advocates for the importance of stability 
• Microcredit: multiple randomized controlled trials in 

different countries by different researchers 
• Importance of incentivizing follow-up work, replication 
• Not always feasible to convene multiple teams 
• Explainability as a form of stability 

• Best practice: Visualizing and investigating the data

[Box, 1976; Wang, Long 2022]

[Yu, 2013, 2020; Yu, Kumbier 2020]

[Arrieta et al 2020; Doshi-Velez et al 2017; Zhang et al 2020; Mittelstadt et al 2019]
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• Would take >1044 years to check the data analysis above 
• We show: an approximation is fast, easy-to-use, accurate 

• Fast: seconds to run on data analysis above 
• Easy-to-use: no need for user to derive equations 
• Accurate: We have theory. But more importantly, we 

return the dropped points, so can check directly 
• Note: any useful data analysis is sensitive to some change

A fast, easy-to-use check for stability
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• Can drop <0.1% of data to change the effect sign
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• Angelucci & De Giorgi 2009 look at “spillover” effect on 

non-poor households in the same village 
• Original analysis removes the largest responses 
• We can drop 3 points of >4,000 & change significance 

• p-hacking isn’t robust to dropping a small data 
fraction: • michaelwiebe.com/blog/2021/01/amip 
• rgiordan.github.io/robustness/2021/09/17/amip_p_hacking.html
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• We review some challenges and mitigations in trusting data 
analyses (even when everyone is well-meaning) 

• Paper: Broderick, Gelman, Meager, Smith, Zheng. “Toward 
a taxonomy of trust for probabilistic machine learning.” 
Science Advances, 2023. 

• We present a way to check if there exists a very small 
fraction of data you can drop to change decisions 

• Paper: Giordano*, Meager*, Broderick “An Automatic 
Finite-Sample Robustness Metric: When Can Dropping a 
Little Data Make a Big Difference?” ArXiv: 2011.14999 

• Code, etc: github.com/rgiordan/zaminfluence 
• Biology: Shiffman, Giordano, Broderick “Could dropping a few 

cells change the takeaways from differential expression?” ArXiv.

Conclusions & Resources
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