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Nonparametric Bayes: Part II
• Last time: 

• Understand what it means to have an infinite/growing 
number of parameters 

• Finite representation allows use of infinite model 
•  www.tamarabroderick.com/tutorials.html 

• This time: 
• Avoid the infinity of parameters for inference 
• e.g. Chinese restaurant process
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Chinese restaurant process

• Same thing we just did 
• Each customer walks into the restaurant 

• Sits at existing table with prob proportional to # people 
there 

• Forms new table with prob proportional to α 
• Marginal for the Categorical likelihood with GEM prior 
!

• Partition of [8]: set of mutually exclusive & exhaustive sets 
of 

z1 = z2 = z7 = z8 = 1, z3 = z5 = z6 = 2, z4 = 3
) ⇧8 = {{1, 2, 7, 8}, {3, 5, 6}, {4}}

[8] = {1, . . . , 8}
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• Probability of this seating: 
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