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* Dirichlet process (DP) stick-breaking

o Griffiths-Engen-McCloskey (GEM) distribution:
P = (/017/027 . ) ™~ GEM(&)

k—1
Vi s Beta(1, o) Pk = H(1 = Vi) | Vi
j=1

e Part of: DP mixture model

1 [McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001 ]
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+ GEM: _

 Compare to
e Finite (small K) mixture model

e Finite (large K) mixture model

S -
e Time series ! l
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e | asttime:

» Understand what it means to have an infinite/growing
number of parameters

* Finite representation allows use of infinite model

® www.tamarabroderick.com/tutorials.html

e [his time:
* Avoid the Infinity of parameters for inference

* e.g. Chinese restaurant process
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e Same thing we just did

e Each customer walks into the restaurant

e Sits at existing table with prob proportional to # people
there
 Forms new table with prob proportional to a

* Marginal for the Categorical likelihood with GEM prior
1 =29 =27 =28 =1,23=25 =2¢6=2,24 =3
= Il = {{1,2,7,8},{3,5,6},{4}}

* Partition of [8]. set of mutually exclusive & exhaustive sets
of [8] ={1,...,8}
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