
Nonparametric Bayesian 
Methods: Part IV

Tamara Broderick
ITT Career Development Assistant Professor 
Electrical Engineering & Computer Science 

MIT



Nonparametric Bayesian 
Methods: Part IV

Tamara Broderick
ITT Career Development Assistant Professor 
Electrical Engineering & Computer Science 

MIT

[ slides, code: 
http://www.tamarabroderick.com/tutorials.html ]



1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity)

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity) 
• Problem: model misspecification, dense graphs

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity) 
• Problem: model misspecification, dense graphs 
• Solution: a new framework for sparse graphs

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity) 
• Problem: model misspecification, dense graphs 
• Solution: a new framework for sparse graphs

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity) 
• Problem: model misspecification, dense graphs 
• Solution: a new framework for sparse graphs 

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity) 
• Problem: model misspecification, dense graphs 
• Solution: a new framework for sparse graphs 

1 [Holland et al 1983; Kemp et al 2006; Xu et al 2007; Airoldi et al 2008; Lloyd et al 2012]



[B, Cai 2015; Cai, B 2015a,b; Crane, Dempsey 2015a,b,16a,b; Cai, Campbell, B 2016; Campbell, Cai, B 2016]

) = p(p( social: Facebook, Twitter, email 
biological: ecological, protein, gene 
transportation: roads, railways

Probabilistic models for graphs

• Rich relationships, coherent uncertainties, prior info 
• Example models: Stochastic block, mixed membership 

stochastic block, infinite relational, and many more 
• Assume: Adding more data doesn’t change distribution of 

earlier data (projectivity) 
• Problem: model misspecification, dense graphs 
• Solution: a new framework for sparse graphs 

• Concurrent & independent graphs work by Crane & Dempsey
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edge-exchangeable 
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• Goal 1: characterization 
theorem for edge-
exchangeable graphs 

• Goal 2: sparsity theorem 
for edge-exchangeable 
graphs

6



Clustering

7



“Clusters”

Clustering

7



Cat
Mou

se

Dog

“Clusters”

Clustering

7



Picture 2
Picture 3
Picture 4
Picture 5
Picture 6
Picture 7

Dog Mou
se

Liz
ard

Sh
ee

p

Clustering

Picture 1
Cat

8

• Groups: clusters



Clustering

• Groups: clusters 
• ExchangeablePicture 2

Picture 3
Picture 4
Picture 5
Picture 6
Picture 7

Dog Mou
se

Liz
ard

Sh
ee

p

Picture 1
Cat

8



Picture 2
Picture 3
Picture 4
Picture 5
Picture 6
Picture 7

Dog Mou
se

Liz
ard

Sh
ee

p

Picture 1
Cat

Feature allocation

9



Picture 2
Picture 3
Picture 4
Picture 5
Picture 6
Picture 7

Dog Mou
se

Liz
ard

Sh
ee

p

Picture 1
Cat

Feature allocation

• Groups: features

9



Picture 2
Picture 3
Picture 4
Picture 5
Picture 6
Picture 7

Dog Mou
se

Liz
ard

Sh
ee

p

Picture 1
Cat

Feature allocation

• Groups: features 
• Exchangeable

[Broderick, Jordan, Pitman 2013; Broderick, Pitman, Jordan 2013]9



10

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

Graph

Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1



Dog Mou
se

Liz
ard

Sh
ee

p

Cat

Graph

• Groups: vertices

Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1

10



Dog Mou
se

Liz
ard

Sh
ee

p

Cat

Graph

• Groups: vertices 
• Edge-exchangeableEdge 2

Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1

10



11

Graph

• Groups: vertices 
• Edge-exchangeableEdge 2

Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1
Dog Mou

se
Liz

ard
Sh

ee
p

Cat



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

Graph

Dog Mou
se

Liz
ard

Sh
ee

p

Cat

11



Dog Mou
se

Liz
ard

Sh
ee

p

Cat

Graph

Edge 2
Edge 3
Edge 4
Edge 5
Edge 6
Edge 7

Edge 1 • Groups: vertices 
• Edge-exchangeable

11



Exchangeable clustering distributions 
are characterized

What about: 
Exchangeable feature allocations? 

Edge-exchangeable graphs?
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What’s next
• Characterize all sparse, edge-exchangeable graphs 
• Characterize the different types of power laws (edges, 

triangles, degree distributions, etc.) 
• Models and inference; truncation approximations
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• Bayesian 
!

• Not parametric (i.e. not finite parameter, unbounded/
growing/infinite number of parameters)

P(parameters|data) / P(data|parameters)P(parameters)

[wikipedia.org]

[Ed Bowlby, NOAA]

[Sudderth, 
Jordan 2009]

[Lloyd et al 
2012; Miller 
et al 2010]

[Arjas, 
Gasbarra 
1994]

[Fox et al 2014]

27

[Escobar, 
West 1995; 
Ghosal 
et al 1999]

[Saria 
et al 

2010]

[Ewens 
1972; 
Hartl, 
Clark 
2003]

Nonparametric Bayes
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