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 Example models: Stochastic block, mixed membership
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Intuition: To a given node, all other nodes look the same.
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Thm (CCB). A wide class of edge-exchangeable
graph models yields sparse graph sequences.
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Exchangeable clustering distributions
are characterized

What about;
Exchangeable feature allocations”
Edge-exchangeable graphs?
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Example graph frequency model
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 Models and inference; truncation approximations
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Nonparametric Bayes

 Bayesian

P(parameters|data) oc P(data|parameters)P(parameters)

* Not parametric (i.e. not finite parameter, unbounded/
growing/infinite number of parameters)
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