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Benefits
• Fast
• Conceptually straightforward
• Popular

Drawbacks
• Still not fast enough!
◊ KD-trees, triangle inequality, online version

• Only finds a local optimum
◊ Multiple initializations

• May not fit the problem...

[Ramasubramanian, Paliwal 1990; 
Moore 2000; Kanungo et al 2002]
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Yes.  Always.
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• Will it terminate?

• Is the clustering any good?
Yes.  Always.

Global dissimilarity only useful 
for comparing clusterings.

K means: evaluation
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◊ Sum over all intra-cluster dissimilarities (e.g. K 
means objective)
◊ Cross-validation
◊ Rand index
◊ Adjusted rand index
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Clustering: evaluation

How to evaluate a clustering algorithm?

• Visualization
• Comparing clusterings: 
◊ Sum over all intra-cluster dissimilarities (e.g. K 
means objective)
◊ Cross-validation
◊ Rand index
◊ Adjusted rand index
◊ Silhouette

[Jepson, Fleet 2007]

Image segmentation
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Clustering: evaluation

How to evaluate a clustering algorithm?

• Visualization
• Comparing clusterings: 
◊ Sum over all intra-cluster dissimilarities (e.g. K 
means objective)
◊ Cross-validation
◊ Rand index
◊ Adjusted rand index
◊ Silhouette

[Blei 2003]

Topic analysis

President
Tiger
Lost
Parents
Opera
Dollar
Ennui
Chess

28



Clustering: evaluation

How to evaluate a clustering algorithm?

• Visualization
• Comparing clusterings: 
◊ Sum over all intra-cluster dissimilarities (e.g. K 
means objective)
◊ Cross-validation
◊ Rand index
◊ Adjusted rand index
◊ Silhouette

[Swayne et al 2006]

GGobi tool
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◊ Cross-validation
◊ Rand index
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How to evaluate a clustering algorithm?

31



32

Clustering: evaluation

How to evaluate a clustering algorithm?

[Boyd-Graber, Chang, et al 2009]

• Visualization
• Comparing clusterings: 
◊ Sum over all intra-cluster dissimilarities
◊ Cross-validation
◊ And many more: rand index, adjusted rand 
index, likelihood, domain-specific measures
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K means algorithm

Benefits
• Fast
• Conceptually straightforward
• Popular

Drawbacks
• Still not fast enough!
◊ KD-trees, triangle inequality, online version

• Only finds a local optimum
◊ Multiple initializations

• May not fit the problem...

[Ramasubramanian, Paliwal 1990; 
Moore 2000; Kanungo et al 2002]
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What is a cluster?
Hard clustering
• K fixed
• One of K disjoint, exhaustive subsets of data; K unknown
• One of K disjoint, exhaustive subsets of data obtained as a 
snapshot of a hierarchy
Soft clustering
• A group with different degrees of membership for different 
data points

[Bishop 2006]34



Hard clustering
• K fixed
• One of K disjoint, exhaustive subsets of data; K unknown
• One of K disjoint, exhaustive subsets of data obtained as a 
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Soft clustering
• A group with different degrees of membership for different 
data points

What is a cluster?

Image compression

[Bishop 2006]34
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What is a cluster?
Hard clustering
• K fixed
• K unknown
• One of K disjoint, exhaustive subsets of data obtained as a 
snapshot of a hierarchy
Soft clustering
• A group with different degrees of membership for different 
data points

[Tibshirani et al 2001]

[Kulis, Jordan 2012]

◊ Heuristic methods: elbow, gap statistic
◊ Optimization methods: AIC, BIC, DP means
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What is a cluster?
Hard clustering
• K fixed
• K unknown
• One of K disjoint, exhaustive subsets of data obtained as a 
snapshot of a hierarchy
Soft clustering
• A group with different degrees of membership for different 
data points

[Tibshirani et al 2001]

◊ Heuristic methods: elbow, gap statistic
◊ Optimization methods: AIC, BIC, DP means
 

[Kulis, Jordan 2012]
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Hard clustering
• K fixed
• K unknown
• One of K disjoint, exhaustive subsets of data obtained as a 
snapshot of a hierarchy
Soft clustering
• A group with different degrees of membership for different 
data points

◊ Heuristic methods: elbow, gap statistic
◊ Optimization methods: AIC, BIC, DP means
◊ Model-based methods: Bayesian prior, Dirichlet process

What is a cluster?

[Teh 2010; Richardson, Green 1997]
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Hard clustering
• K fixed
• K unknown
• Clustering “consistent” across different K

Soft clustering
• A group with different degrees of membership for different 
data points

What is a cluster?
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Hard clustering
• K fixed
• K unknown
• Clustering “consistent” across different K

Soft clustering
• A group with different degrees of membership for different 
data points

◊ Hierarchical clustering, agglomerative clustering

What is a cluster?
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Hard clustering
• K fixed
• K unknown
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Soft clustering
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What is a cluster?

◊ Fuzzy c means, 
(Gaussian) mixture 
models

[Bsihop 2006]

Hard clustering
• K fixed
• K unknown
• Clustering “consistent” across different K

Soft clustering
• Different degrees of membership for different data points
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How to measure (dis)similarity?
K means
• Sensitive to outliers
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◊ K medoids
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K means
• Sensitive to outliers

• Yields spherical clusters

• Requires continuous, numerical features

How to measure (dis)similarity?

◊ K medoids

◊ Radial similarity, transform data, agglomerative clust.
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• Is the data set featurized?

• Are the features continuous numbers?

• Are these numbers commensurate?

• Are there too many features?

• Are there any domain-specific reasons to 
change the features?

Data pre-processing

43



Person 
275

Age: 45

Height: 5’ 7”
Residence: 

Urban

Education: 
Bachelor’s

Tweet: “Just landed in 
Iceland. Remember 

Eyjafjallajökull?”

Data pre-processing

44



Age Height Education 
Level

Tweets about 
Eyjafjallajökull ...

45 5’ 7” Bachelor’s 5 ...
Person 

275

...
...

...
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Feature 1 Feature 2 Feature 3 Feature 4 ...

45 67 3.5 5 ...
Person 

275

Feature

Data point

...
...

...
...

47
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One dissimilarity value for mixed features

[Hastie et al 2001]
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0
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[Hastie et al 2001]

-2 2

-2

2

One dissimilarity value for mixed features
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[Hastie et al 2001]

-2 2

-2

2

Standardization/
Normalization
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One dissimilarity value for mixed features
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• Are there too many features?

Data pre-processing

52

◊ Principal component analysis (PCA)

[Shlens 2009]



• Are there too many features?

• Are there any domain-specific reasons to 
change the features?

Data pre-processing
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◊ Principal component analysis (PCA), feature selection
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Example: DNA decoding

...cgtggtgaatggatgctagggcgcacgta...

Hypothesis: DNA is made up of instruction 
words of length 1, 2, 3, or 4 characters. 

Question: Is this true? Which length is correct?

55 [Gorban, Zinovyev 2007]
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Example: DNA decoding

...cgtggtgaatggatgctagggcgcacgta...

Hypothesis: DNA is made up of instruction 
words of length 1, 2, 3, or 4 characters. 

Question: Is this true? Which length is correct?

55 [Gorban, Zinovyev 2007]

From “PCA and K-means decipher genome”
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Example: DNA decoding

...cgtggtgaatggatgctagggcgcacgta...

Data: ~300KB DNA substring of Caulobacter 
Crescentus bacterium 

Non-overlapping DNA strings of length 300

For each substring, a count of each possible 
word of length m (m = 1, 2, 3, or 4)

56 [Gorban, Zinovyev 2007]



Example: DNA decoding

Featurized data for m = 2

6 10 4

8 20 9

aa ac ... tt

String 1

...

String 1017

...

57 [Gorban, Zinovyev 2007]



Example: DNA decoding

Examine the first two principal 
components (from PCA)

m=1 m=2

m=3 m=4
58 [Gorban, Zinovyev 2007]



Example: DNA decoding

Count data for m = 3

N1,aaa N1,aac N1,ttt

N1017,aaa N1017,aac N1017,ttt

aaa aac ... ttt

String 1

...

String 1017

...

59 [Gorban, Zinovyev 2007]



Example: DNA decoding

Normalized data for m = 3

x1,aaa x1,aac x1,ttt

x1017,aaa x1017,aac x1017,ttt

aaa aac ... ttt

String 1

...

String 1017

...

x1,aaa = (N1,aaa −meanaaa)/stdaaa

60 [Gorban, Zinovyev 2007]
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Example: DNA decoding

Normalized data for m = 3

K means (K = 7)

Visualize 
with PCA
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Example: DNA decoding

Normalized data for m = 3

Visualize 
with PCA

Analysis of 
Results

62 [Gorban, Zinovyev 2007]

K means (K = 7)



Goals

• Big ideas (clustering)
• Concrete implementation (K means)
• Machine learning is not a black box
• Machine learning pipeline
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