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... Instead of classification?

* Exploratory data analysis

* Classes are unspecified (unknown, changing
too quickly, expensive to label data, etc)

... When the cartoon looks so easy?
* High-dimensional data

* Big data

* Data not numerical
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Benefits

* Fast
* Conceptually straightforward
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K means objective:
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K means algorithm

* |Initialize K cluster centers
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K means algorithm

* Repeat until convergence:
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K means algorithm

19

< Assign each data point to
the cluster with the closest
center.
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O Forn=1,..,N
* Find k with smallest
*Put x, € Sk (and no
other §j)
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K means algorithm

20

< Assign each cluster
center to be the mean of its
cluster’s data points.



K means algorithm
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O Forn=1,..,N
* Find k with smallest
*Put x, € Sk (and no
other §j)
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* Repeat until Sy,...,.Sk don’t
change:
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K means algorithm
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Outline

|. K means algorithm



Outline

2. Clustering evaluation
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K means: evaluation

* Will it terminate?
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K means: evaluation

* Will it terminate?

* |s the clustering any good!?
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K means: evaluation

* Will it terminate?

* |s the clustering any good!?
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Clustering: evaluation

Recall: Classification
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Clustering: evaluation

Recall: Classification
 Evaluate on test data
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Clustering: evaluation

Recall: Classification

* Evaluate on test data
* Absolute, universal scale: 0 - 100% accuracy
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Clustering: evaluation

Recall: Classification
e Evaluate on test data
* Absolute, universal scale: 0 - 100% accuracy

How to evaluate a clustering algorithm!?
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Recall: Classification
e Evaluate on test data
* Absolute, universal scale: 0 - 100% accuracy

How to evaluate a clustering algorithm!?
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization

Image segmentation



Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization

Topic analysis
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization
GGobi tool
r , “ r . ~
066 X\ GGobi O O O \ olive.csv: Scatterplot (current)
File Display View Interaction Tools Help | File Options Tour2D
20D Tour . —~ — —
I L SEpan @palmmc
X Area
L] Bause T palmitic @palmltolelc
Reinit | Scramble (X palmitoleic
Manual manipulation T stearic ®St€aflc
Oblique v e—
X oleic I
Projection pursuit — : prchis
- X linoleic :
X linolenic ‘leolelc
X arachidic
‘ @Imolcmc
X I eicosenoic
@arachldic
I Manip

[olive.csv: 572 x 10 (/Users/dicook/ggobi-svn/ggobi/trunk/data/olive.csv)
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization
* Comparing clusterings:
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How to evaluate a clustering algorithm?

* Visualization
* Comparing clusterings:
& Sum over all intra-cluster dissimilarities
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization
* Comparing clusterings:
& Sum over all intra-cluster dissimilarities
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization

* Comparing clusterings:
¢ Sum over all intra-cluster dissimilarities
¢ Cross-validation
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization

* Comparing clusterings:
¢ Sum over all intra-cluster dissimilarities
¢ Cross-validation
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization

* Comparing clusterings:
¢ Sum over all intra-cluster dissimilarities
¢ Cross-validation
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Clustering: evaluation

How to evaluate a clustering algorithm?

* Visualization

* Comparing clusterings:
¢ Sum over all intra-cluster dissimilarities
¢ Cross-validation

¢ And many more: rand index, adjusted rand
index, likelihood, domain-specific measures
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Outline

2. Clustering evaluation



Outline

3. Clustering trouble-shooting



K means algorithm
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Benefits

* Fast
* Conceptually straightforward

* Popular
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K means algorithm A
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Benefits ALY
* Fast xx

* Conceptually straightforward

* Popular w
Trouble-shooting

* Still not fast enough!
& KD-trees, triangle inequality, online version
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* Popular

Trouble-shooting
* Still not fast enough!

* Only finds a local optimum




K means algorithm

33

Benefits

* Fast

* Conceptually straightforward
* Popular

Trouble-shooting
* Still not fast enough!

* Only finds a local optimum
¢ Multiple initializations




K means algorithm

33

Benefits

* Fast

* Conceptually straightforward
* Popular

Trouble-shooting
* Still not fast enough!

* Only finds a local optimum

* May not fit the problem...
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3. Clustering trouble-shooting



Outline

3. Clustering trouble-shooting
* Grouping
* Similarity
* Data



Outline

3. Clustering trouble-shooting
* Grouping



What is a cluster?

Hard clustering
* K fixed

34



What is a cluster?

Hard clustering
* K fixed

Image compression
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What is a cluster?

Hard clustering

e K fixed
e K unknown
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What is a cluster?

35

Hard clustering
* K fixed

e K unknown
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What is a cluster?

Hard clustering
* K fixed

* K unknown
¢ Heuristic methods: elbow, gap statistic
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What is a cluster?

Hard clustering
* K fixed
* K unknown
¢ Heuristic methods: elbow, gap statistic

¢ Optimization methods: AlC, BIC, DP means
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What is a cluster?

Hard clustering
* K fixed
* K unknown
¢ Heuristic methods: elbow, gap statistic

¢ Optimization methods: AlC, BIC, DP means
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What is a cluster?

Hard clustering

e K fixed

* K unknown
¢ Heuristic methods: elbow, gap statistic

¢ Optimization methods: AlC, BIC, DP means
¢ Model-based methods: Bayesian prior, Dirichlet process
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What is a cluster?

Hard clustering

e K fixed

* K unknown
* Clustering “consistent” across different K
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What is a cluster?

Hard clustering

e K fixed

* K unknown
* Clustering “consistent” across different K

¢ Hierarchical clustering, agglomerative clustering
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What is a cluster?

Hard clustering

e K fixed

* K unknown
* Clustering “consistent” across different K

Soft clustering
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What is a cluster?

Hard clustering

* K fixed

* K unknown

* Clustering “consistent” across different K

Soft clustering
* Different degrees of membership for different data points

¢ Fuzzy ¢ means, ” ., .,}-’.
(Gaussian) mixture _ PR
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3. Clustering trouble-shooting
* Grouping



Outline

3. Clustering trouble-shooting

* Similarity



How to measure (dis)similarity?

K means
e Sensitive to outliers
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How to measure (dis)similarity?

K means
* Sensitive to outliers
o K medoids
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How to measure (dis)similarity?

K means
e Sensitive to outliers

* Yields spherical clusters
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How to measure (dis)similarity?

K means
e Sensitive to outliers

* Yields spherical clusters
¢ Radial similarity, polar coordinates, agglomerative cl.
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How to measure (dis)similarity?

K means
e Sensitive to outliers

* Yields spherical clusters

* Requires continuous, numerical features
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3. Clustering trouble-shooting

* Similarity
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3. Clustering trouble-shooting

e Data



Data pre-processing

e |s the data set featurized?
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Data pre-processing

Person

Residence:
Height: 5’ 77 Urban
. Tweet: “Just landed in
Educat|0|’1: Iceland. Remember
Bachelor’s Eyjafiallajokull?”
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Data pre-processing

Age Height

Person

275 45

5’ 79’
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5 ‘
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Data pre-processing

Featurization
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Data pre-processing

e |s the data set featurized?
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Data pre-processing

e |s the data set featurized?

 Are the features continuous numbers!?
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Data pre-processing

Age Height

Person

275 45

5’ 79’

Data point
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Data pre-processing
Feature

‘ Feature | ‘ Feature 2 ‘ Feature 3 ‘ Feature 4 ‘ \

Person 45 ‘ 67 ‘ 3.5 ‘ 5 ‘ ‘

275

Data point
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Data pre-processing

e |s the data set featurized?

 Are the features continuous numbers!?
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Data pre-processing

* |s the data set featurized?
 Are the features continuous numbers!?

e Are these numbers commensurate!?
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Data pre-processing

One dissimilarity value for mixed features

10
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Data pre-processing

One dissimilarity value for mixed features

10

dis(xs, x17)
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Data pre-processing

One dissimilarity value for mixed features

10
D
dis(xz,x17) = Z
d=1
0
0 |
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Data pre-processing

One dissimilarity value for mixed features
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Data pre-processing

One dissimilarity value for mixed features

Standardization/
Normalization
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Data pre-processing

* |s the data set featurized?
 Are the features continuous numbers!?

e Are these numbers commensurate!?
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Data pre-processing

* |s the data set featurized?
 Are the features continuous numbers!?
* Are these numbers commensurate?

* Are there too many features?
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Data pre-processing

* Are there too many features?
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Data pre-processing

52

* Are there too many features?
¢ Principal component analysis (PCA)
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Data pre-processing

* Are there too many features?
¢ Principal component analysis (PCA), feature selection
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Data pre-processing

* |s the data set featurized?
 Are the features continuous numbers!?
* Are these numbers commensurate?

* Are there too many features?
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Data pre-processing

* |s the data set featurized!?

* Are the features continuous numbers!?
* Are these numbers commensurate!’

* Are there too many features?

* Are there any domain-specific reasons to
change the features?
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Outline

Clustering: Grouping data according to similarity.

3. Clustering trouble-shooting



Outline

Clustering: Grouping data according to similarity.

4. Example



Example: DNA decoding

. . .Cgtggtgaatggatgctagggcgcacgta. ..

Hypothesis: DNA is made up of instruction
words of length |, 2, 3, or 4 characters.
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Example: DNA decoding

. . .Cgtggtgaatggatgctagggcgcacgta. ..

Hypothesis: DNA is made up of instruction
words of length |, 2, 3, or 4 characters.

Question: Is this true? Which length is correct!?
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Example: DNA decoding

. . .Cgtggtgaatggatgctagggcgcacgta. ..

Hypothesis: DNA is made up of instruction
words of length |, 2, 3, or 4 characters.

Question: Is this true? Which length is correct!?

From “PCA and K-means decipher genome”
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Example: DNA decoding

. . .Cgtggtgaatggatgctagggcgcacgta. ..

Data: ~300KB DNA substring of Caulobacter
Crescentus bacterium
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Data: ~300KB DNA substring of Caulobacter
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Non-overlapping DNA strings of length 300




Example: DNA decoding

56

. . .Cgtggtgaatggatgctagggcgcacgta. ..

Data: ~300KB DNA substring of Caulobacter
Crescentus bacterium

N

Non-overlapping DNA strings of length 300

N

For each substring, a count of each possible
word of length m (m = 1,2, 3, or 4)




Example: DNA decoding

Featurized data for m =

String 1017
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Example: DNA decoding

Examine the first two principal
components (from PCA)
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Example: DNA decoding

Count dataform=3

ddad adC

String IOI7 NIOI7,aaa NIOI7,aac
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Example: DNA decoding

Normalized data for m=3

ddad adC .ee ttt

L1 aaa — (Nl,aaa — meanaaa)/Stdaaa
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Example: DNA decoding

Normalized data for m =3
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Example: DNA decoding

Normalized data for m =3

K means (K = 6)
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Example: DNA decoding

61

Normalized data for m =3

K means (K = 6)

N

Visualize
with PCA




Example: DNA decoding

Normalized data form=3

K means (K = 6)

N K

Visualize
with PCA -2
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Example: DNA decoding

Normalized data form=3

N

K means (K =7)

N 0

Visualize
with PCA
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Example: DNA decoding

Normalized data form=3

N

Kmeans (K=7) '

2

7 :

Visualize
with PCA
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Example: DNA decoding

Normalized data form=3

N

K means (K =7)

N

Visualize
with PCA

N

Analysis of
Results
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Goals

» Big ideas (clustering)

» Concrete implementation (K means)
» Machine learning is not a black box

» Machine learning pipeline
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