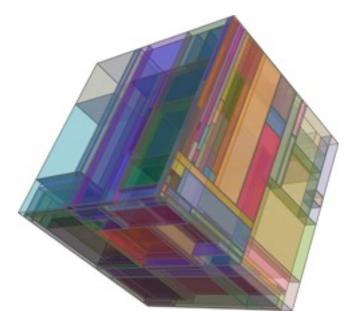


Clusters and features from combinatorial stochastic processes

Tamara Broderick UC Berkeley

September 13, 2012



Nonparametric Bayesian statistics

Bayesian

- Specify a generative model
- Calculate posterior

Nonparametric (Bayesian)

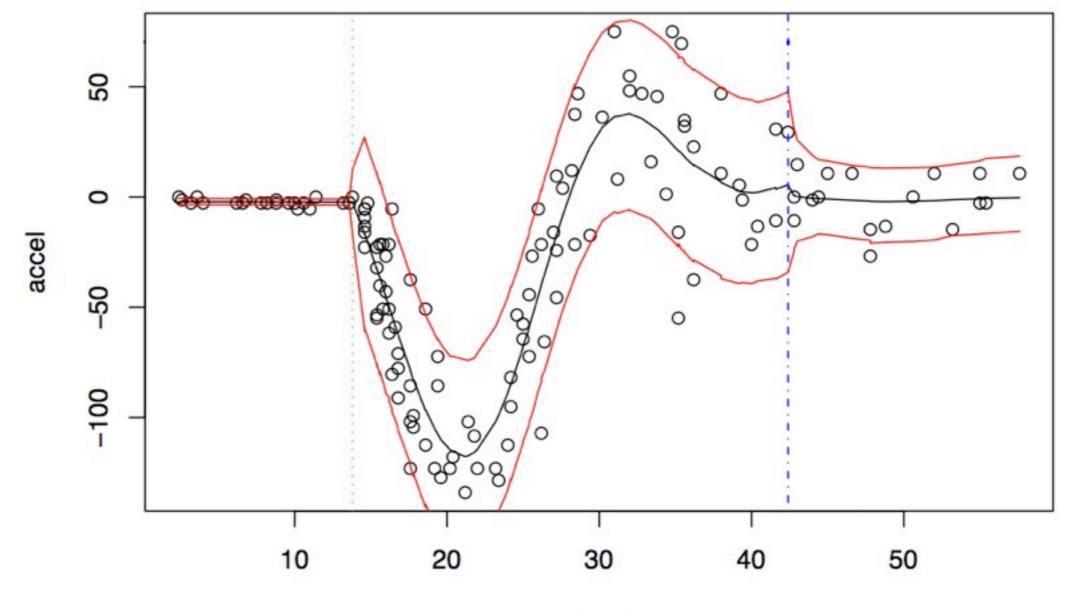
• Number of parameters grows with the size of the data

Nonparametric Bayesian statistics

Continuous/ordinal

- E.g. Gaussian process
- Supervised learning

smooth function

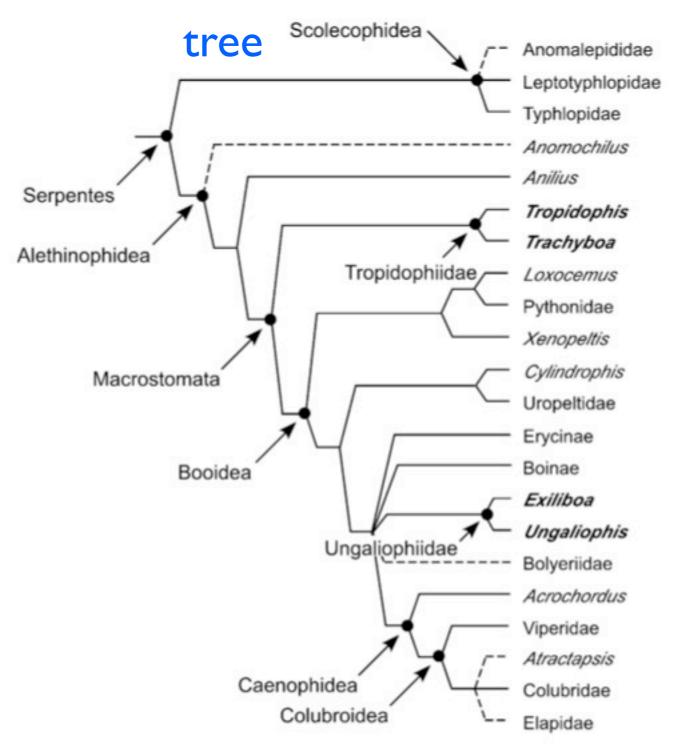


Nonparametric Bayesian statistics

Discrete/combinatorial

- E.g. Dirichlet process
- Latent/unsupervised learning

permutation $\sigma: 1 \rightarrow 5$ $2 \rightarrow 1$ $3 \rightarrow 4$ $4 \rightarrow 2$ $5 \rightarrow 3$



I. Clusters

• Overview

- Overview
- Distribution

- Overview
- Distribution
- Proportions

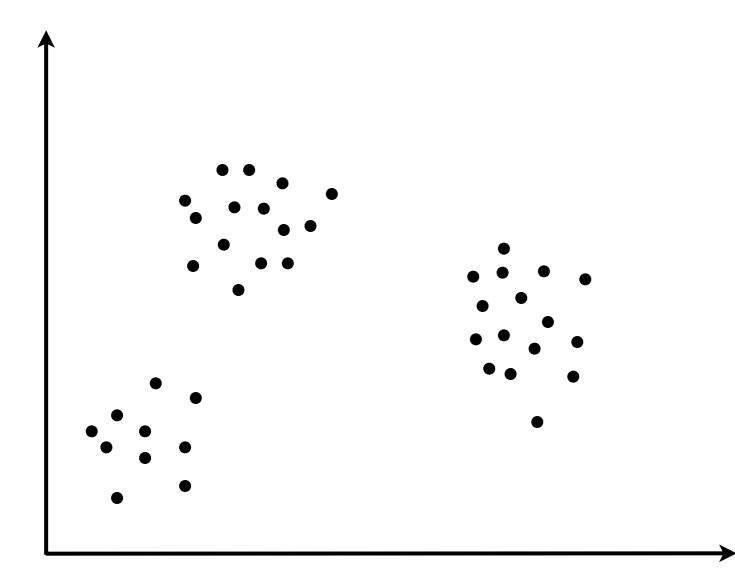
- Overview
- Distribution
- Proportions
- Random probability measure

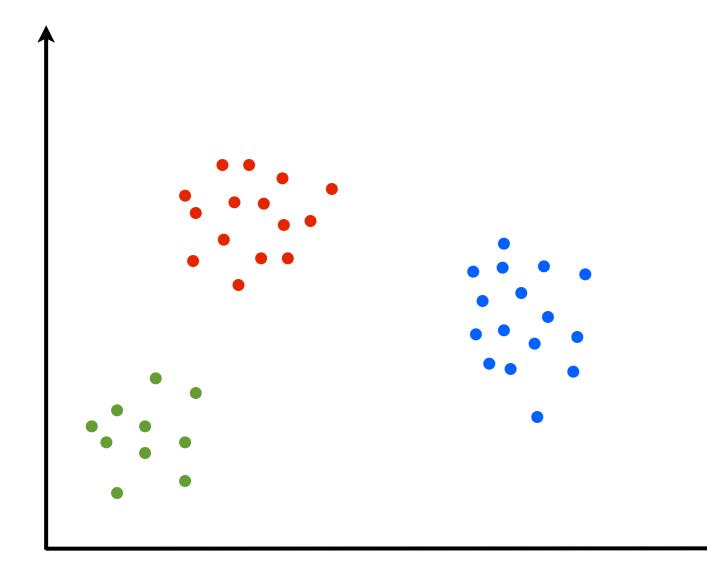
I. Clusters

- Overview
- Distribution
- Proportions
- Random probability measure

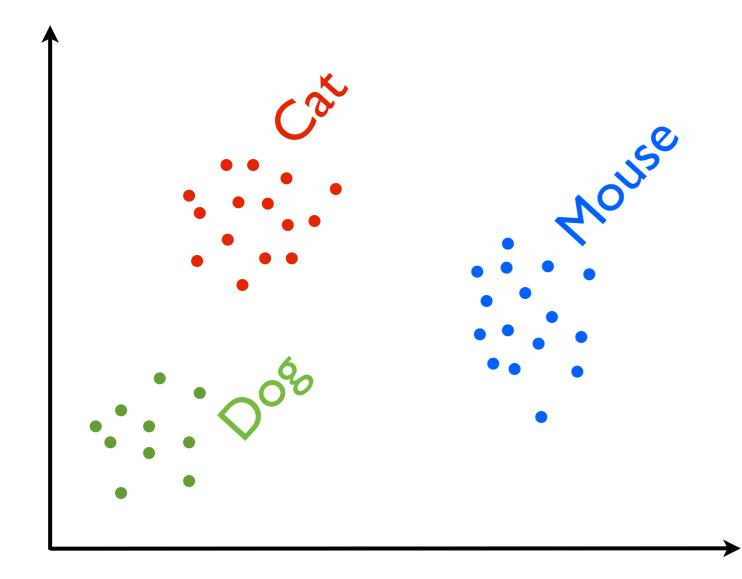
I. Clusters

- Overview
- Distribution
- Proportions
- Random probability measure

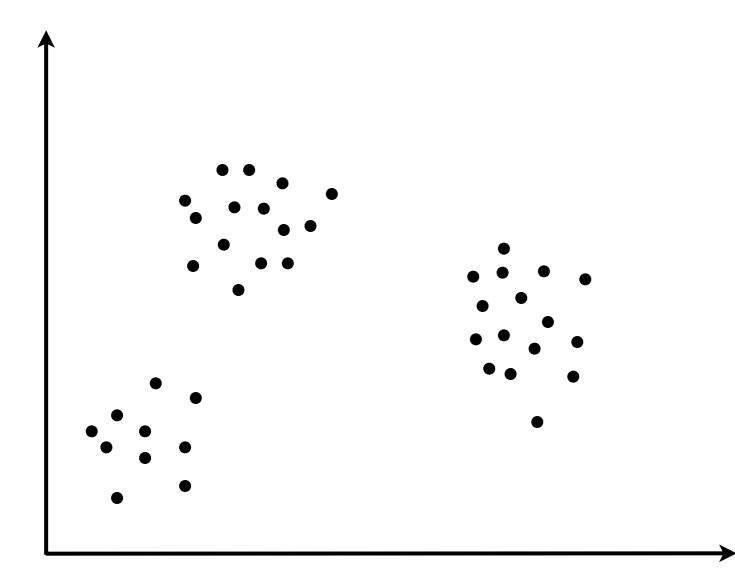




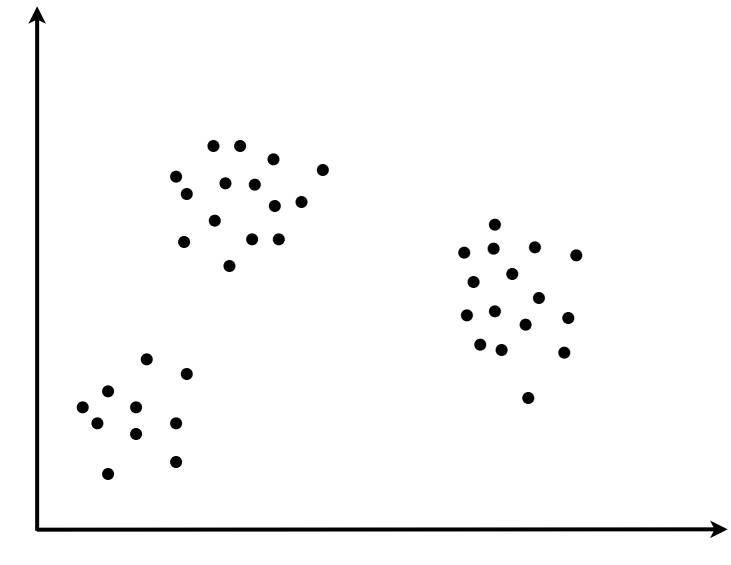
"clusters", "classes", "blocks (of a partition)"



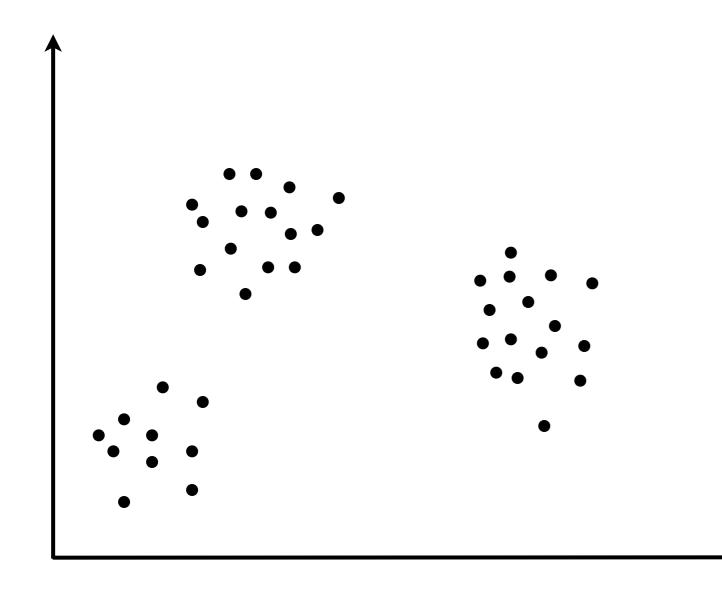
"clusters", "classes", "blocks (of a partition)"



...is hard



...is hard • Unsupervised



...is hard

- Unsupervised
- Data dimensions not always easy to visualize

...is useful

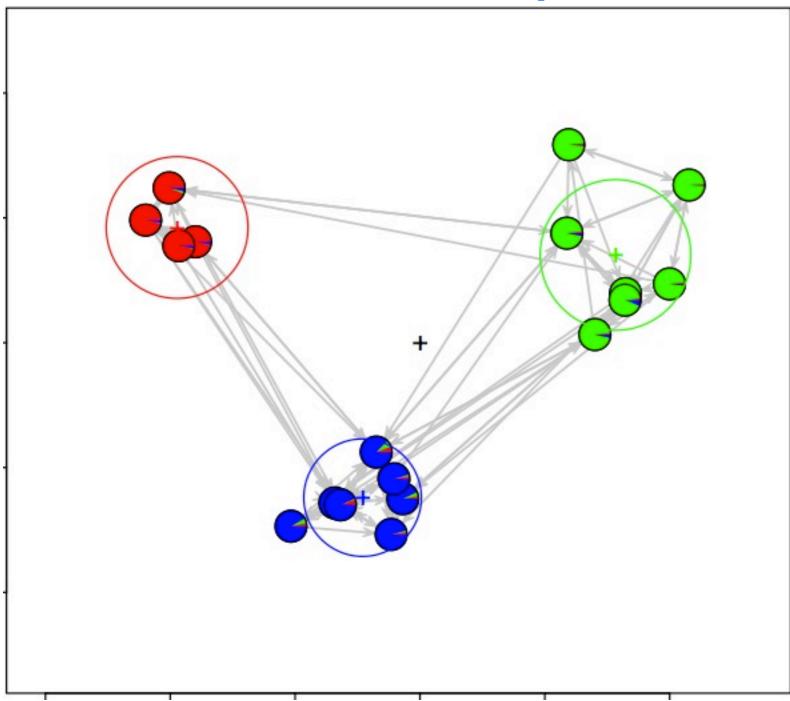
...is useful

• Exploratory data analysis

...is useful

• Exploratory data analysis

Network Analysis



...is useful

• Exploratory data analysis

 Classes are unspecified (changing too quickly, expensive to label data, unknown, etc)

...is useful

• Exploratory data analysis

 Classes are unspecified (changing too quickly, expensive to label data, unknown, etc)

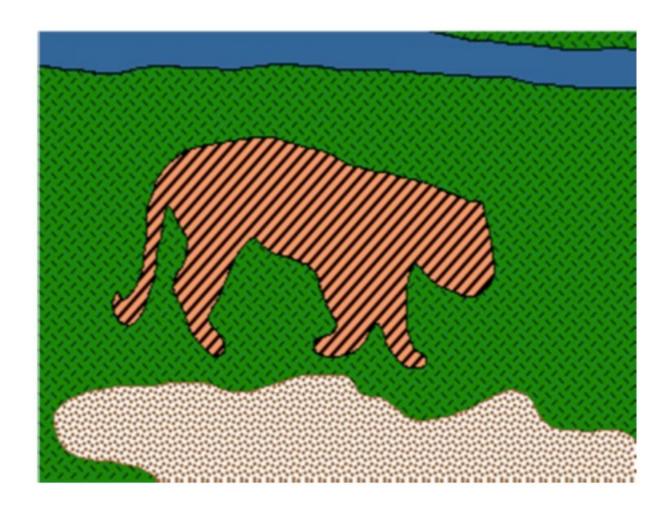
Document clustering

tiger	Search Show
 <u>All results (100)</u> <u>Mac OS (9)</u> <u>Tiger Woods (5)</u> <u>Tiger Cubs (4)</u> <u>Computer (4)</u> <u>Onitsuka Tiger by Asics (4)</u> <u>Information on the Tiger (6)</u> <u>Security Tool (3)</u> <u>Technology Tiger Attack</u> <u>Helicopter (3)</u> <u>Sign (3)</u> <u>Siberian Tiger (3)</u> <u>Geographic (2)</u> Ordered Lict by Store Smith (2) 	 5 Official Website for Tiger Woods Official site for pro golfer Tiger Woods, complete with video interviews, photos, stats, and features. http://www.tigerwoods.com/ 34 tiger Encyclopædia Britannica tiger Woods, Tiger tiger beetle http://www.britannica.com/eb/article-9072439/tiger 66 Abilene Reporter News: Tiger Woods Tiger Woods Haunted by Tears, Failure. Bulk of Masters Field Set by Final Rank Tiger Finishes the Season in Style. Els Wins South African Open by 3 Strokes http://www.reporternews.com/abil/sp_tiger_woods/0,1874,ABIL_i

...is useful

- Exploratory data analysis
- Classes are unspecified (changing too quickly, <u>expensive to label data</u>, unknown, etc)

Image segmentation



...is useful

• Exploratory data analysis

 Classes are unspecified (changing too quickly, expensive to label data, <u>unknown</u>, etc)

Topic Analysis

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

Why Bayesian?

Topic Analysis

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

Why Bayesian? • Flexibility to specify model

Topic Analysis

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

Why Bayesian? • Flexibility to specify model Why nonparametric?

Topic Analysis

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

Why Bayesian? • Flexibility to specify model Why nonparametric?

 Don't know the number of clusters in advance

Topic Analysis

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

arst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

I. Clusters

- Overview
- Distribution
- Proportions
- Random probability measure

I. Clusters

Overview

Distribution

- Proportions
- Random probability measure

I. Clusters

Overview

Distribution

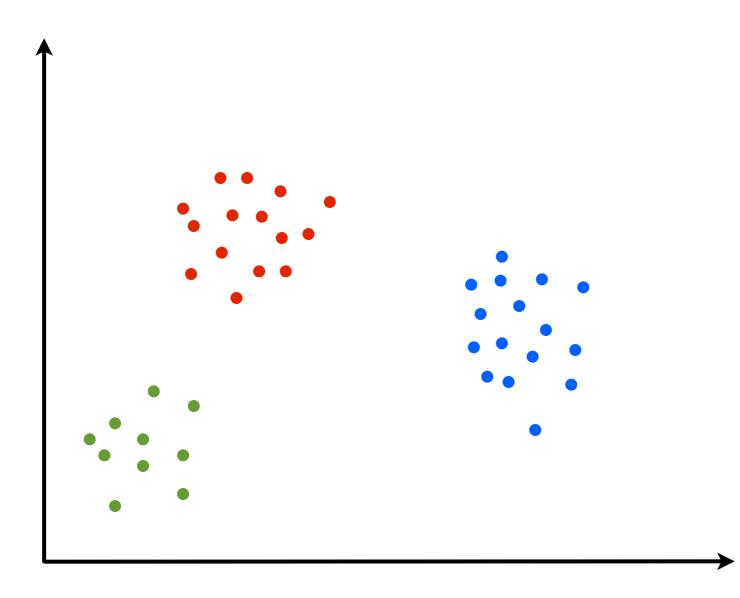
- ♦ Clusters
- ♦ Data given clusters
- ♦ Posterior
- Proportions
- Random probability measure

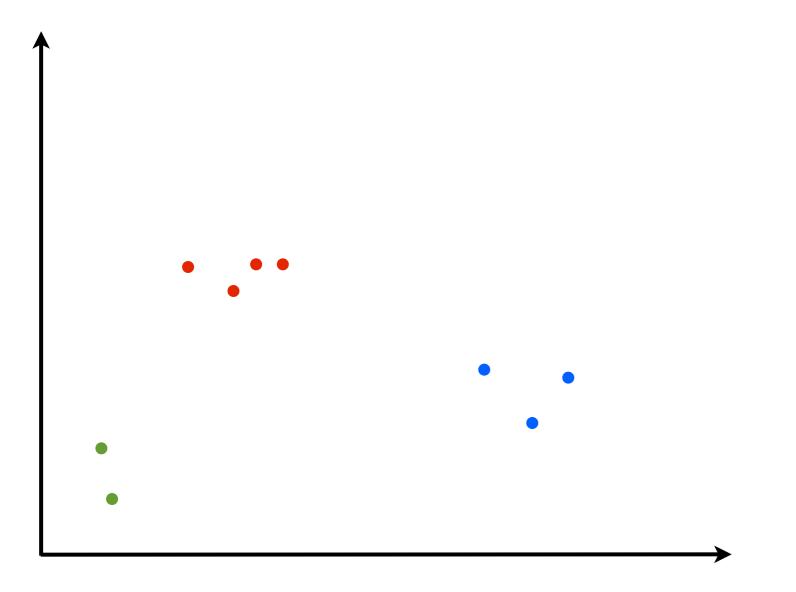
I. Clusters

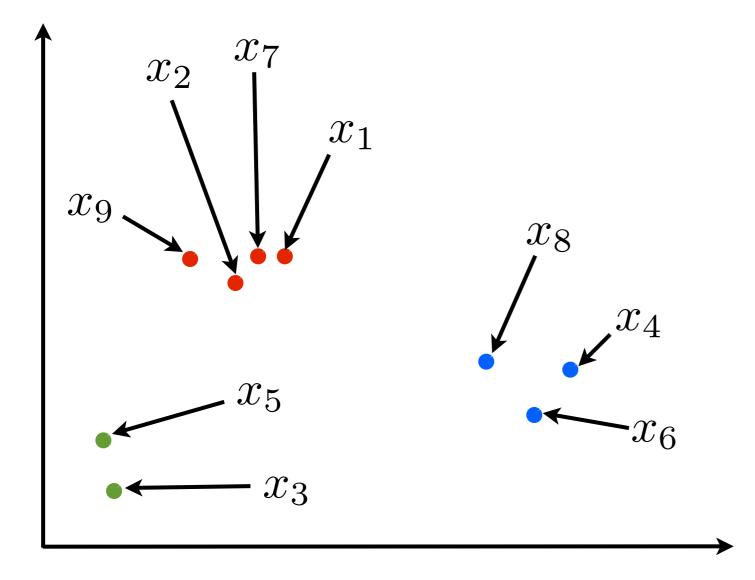
Overview

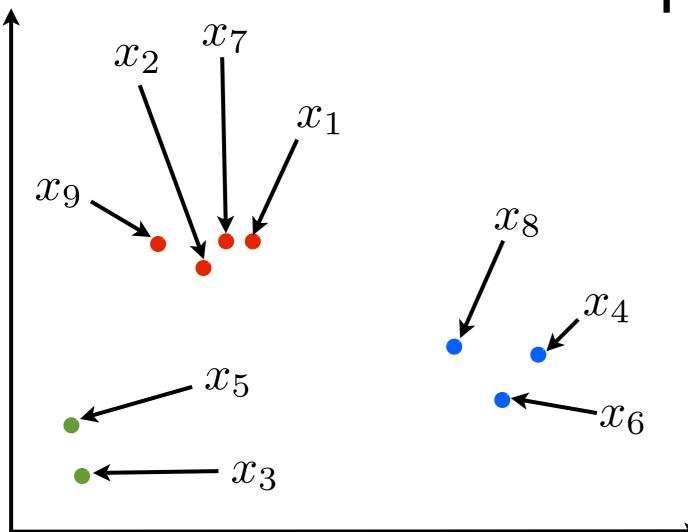
Distribution

- ♦ Clusters
- ♦ Data given clusters
- Posterior
- Proportions
- Random probability measure

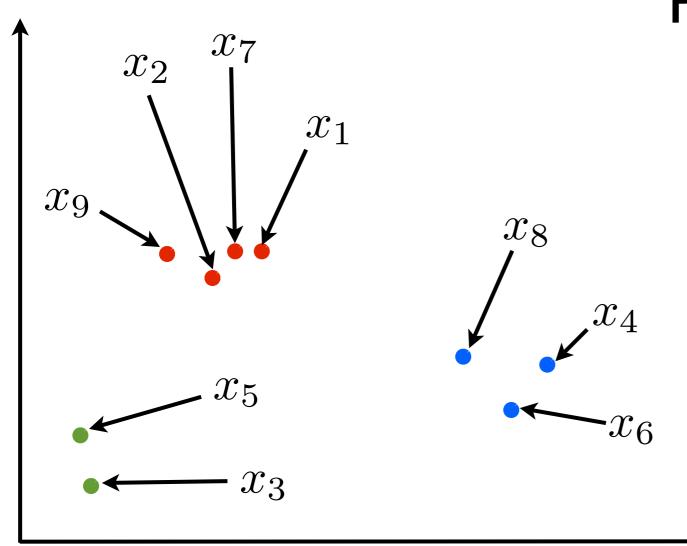




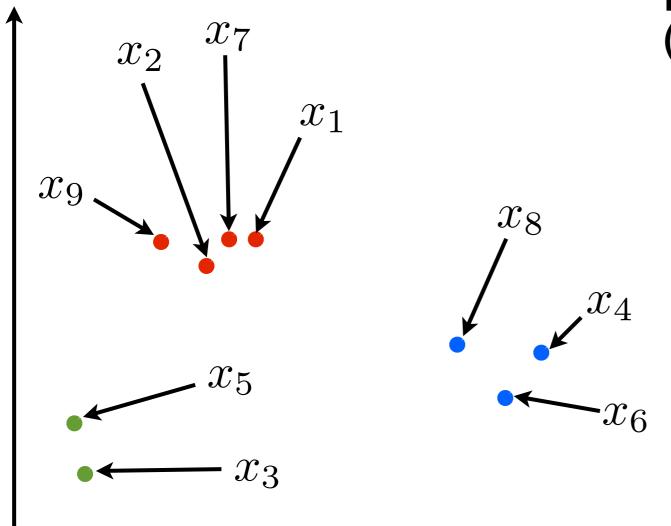




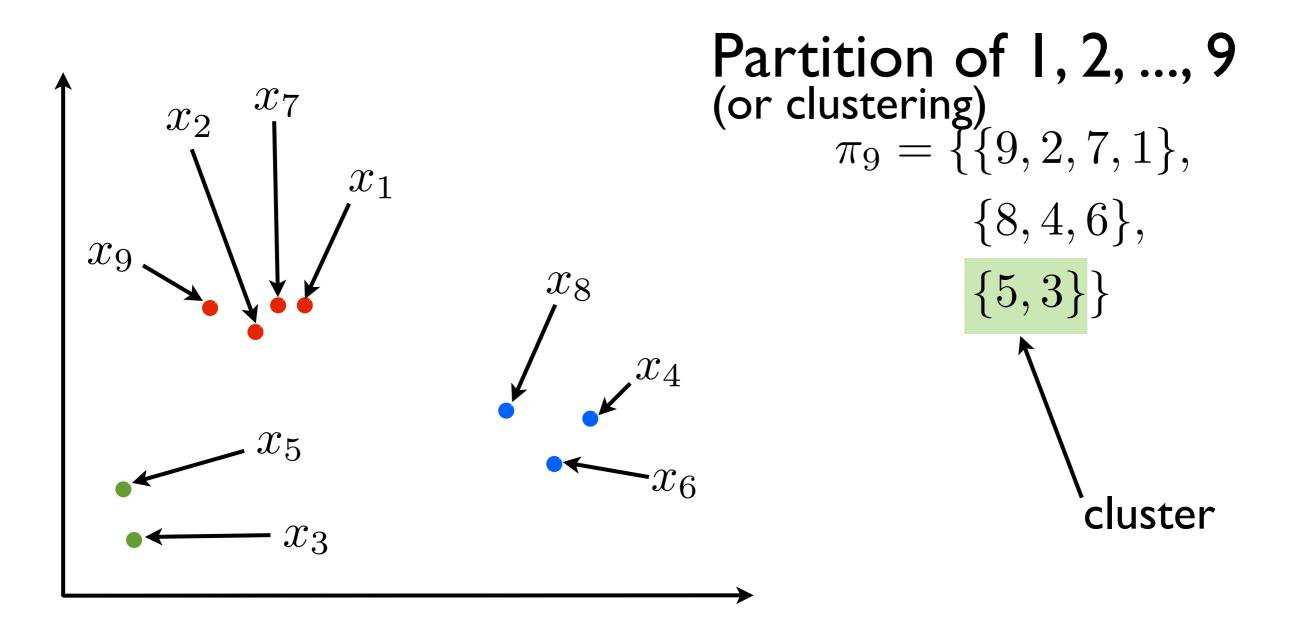
Partition of 1, 2, ..., 9

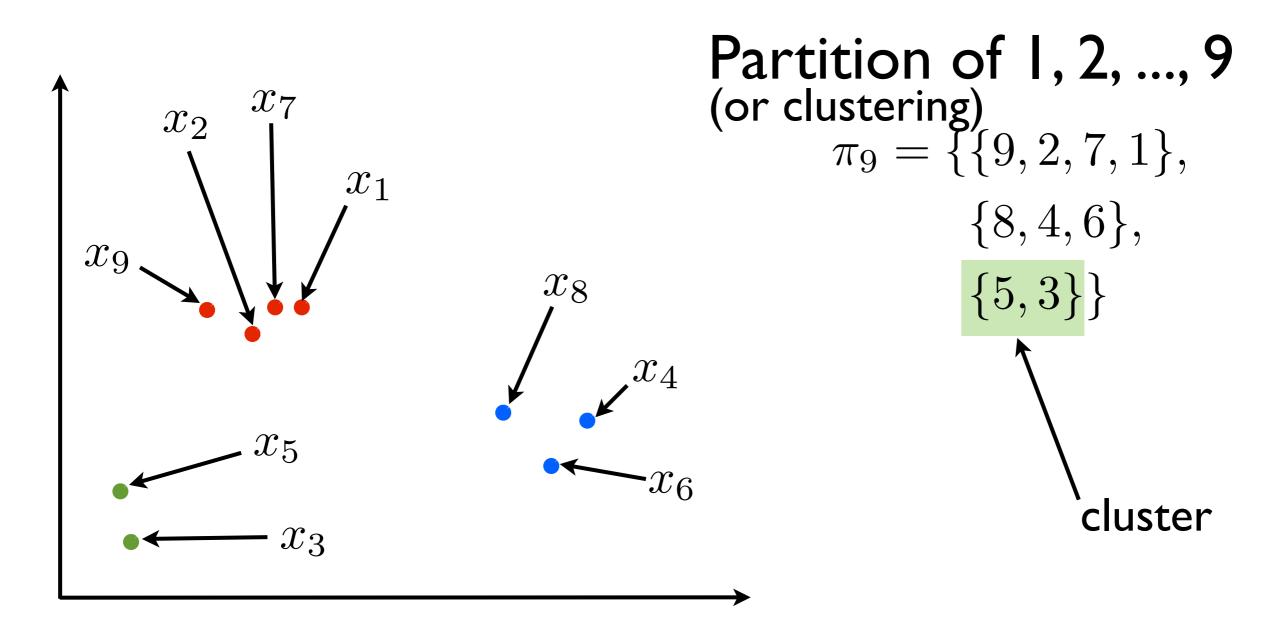


Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

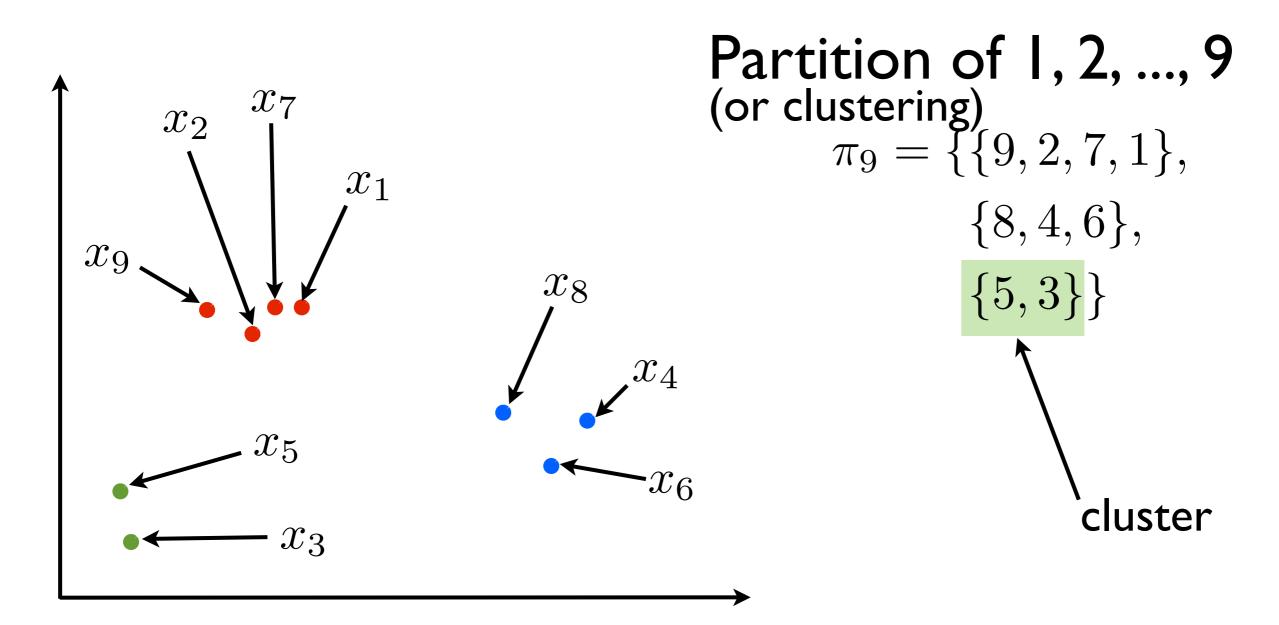


Partition of I, 2, ..., 9 (or clustering) $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

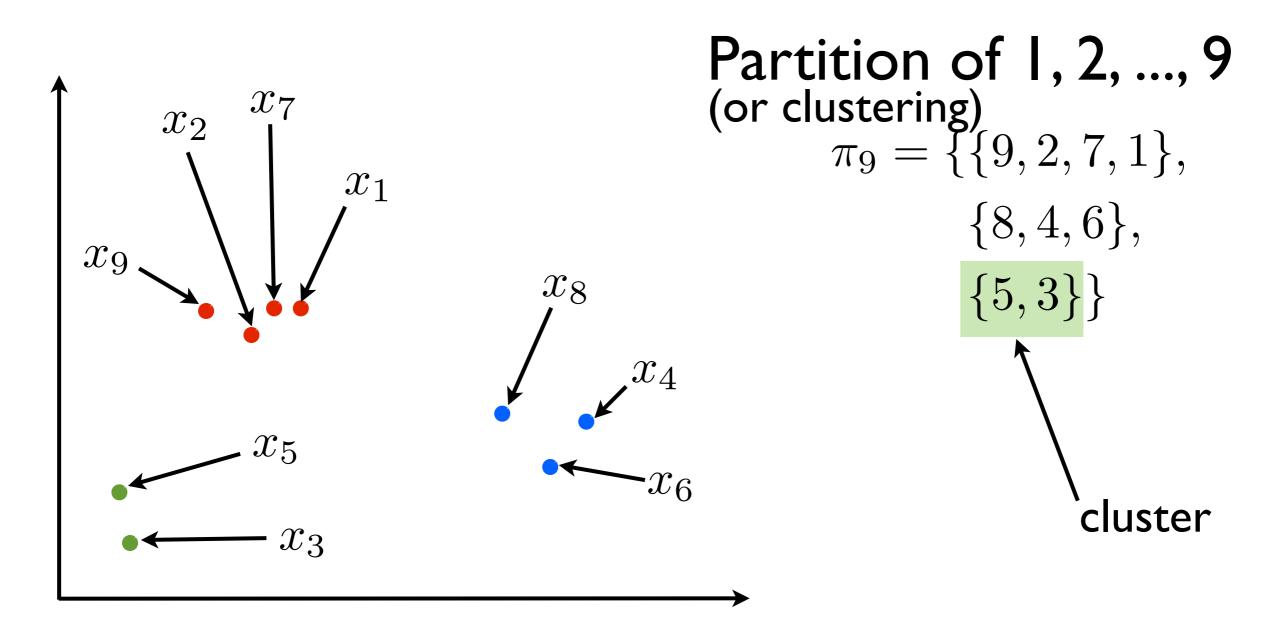




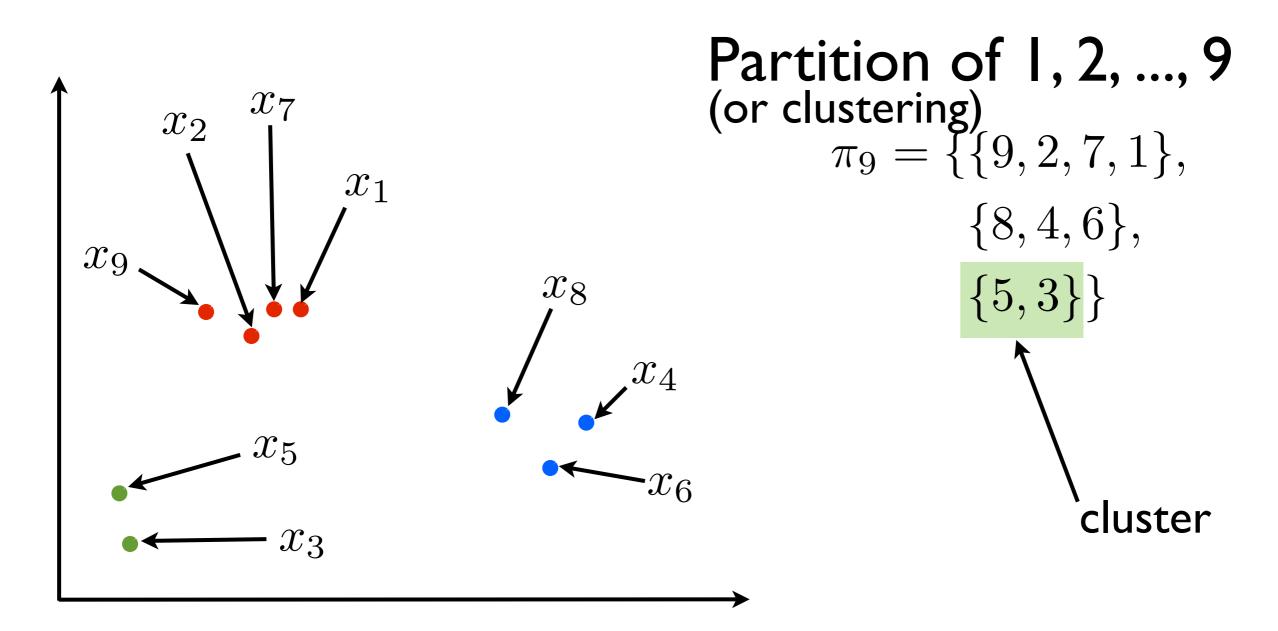
N: Number of data points



N: Number of data points K: Number of clusters



N: Number of data points K: Number of clusters (N = 9)



N: Number of data points (N = 9) K: Number of clusters (K = 3)

Random partition

Random partition

Partition of 1, 2, ..., 9

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of 1, 2, ..., 9

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of 1, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\pi'_9 = \{\{1, 3, 8, 2\}, \\\{9, 5, 7\}, \{6, 4\}\}$

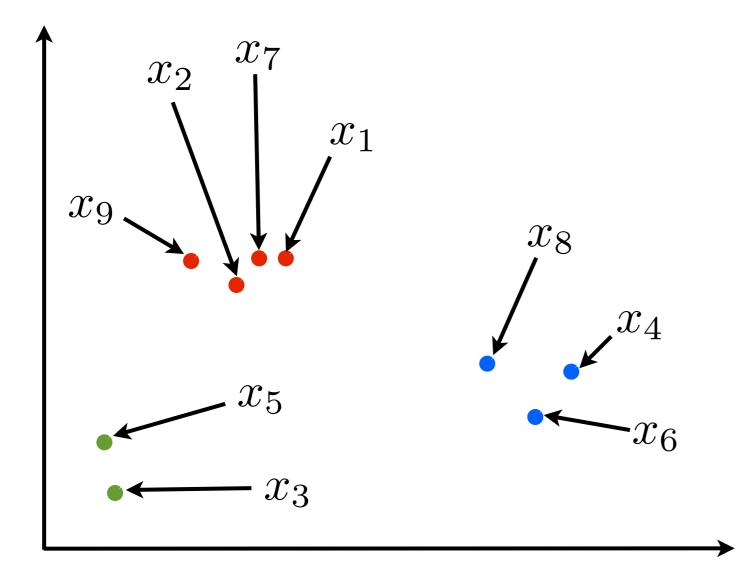
Random partition

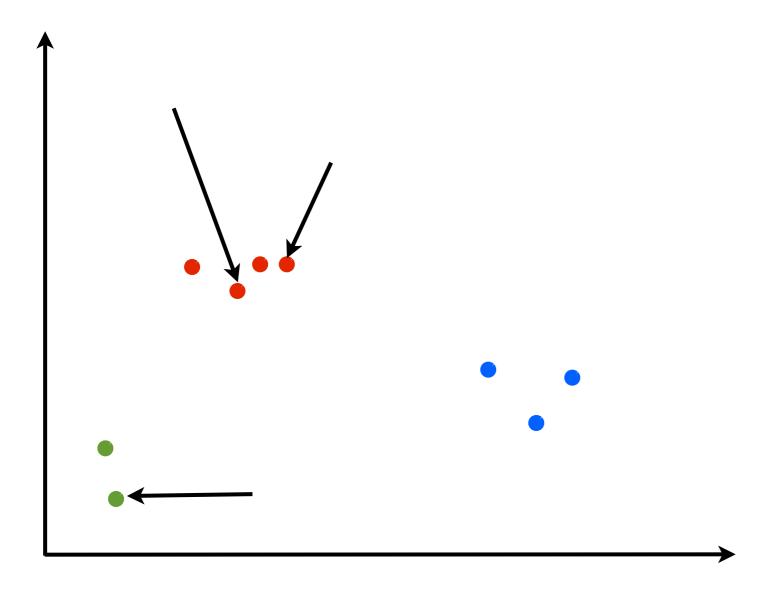
 $\mathbb{P}(\Pi_N = \pi_N)$

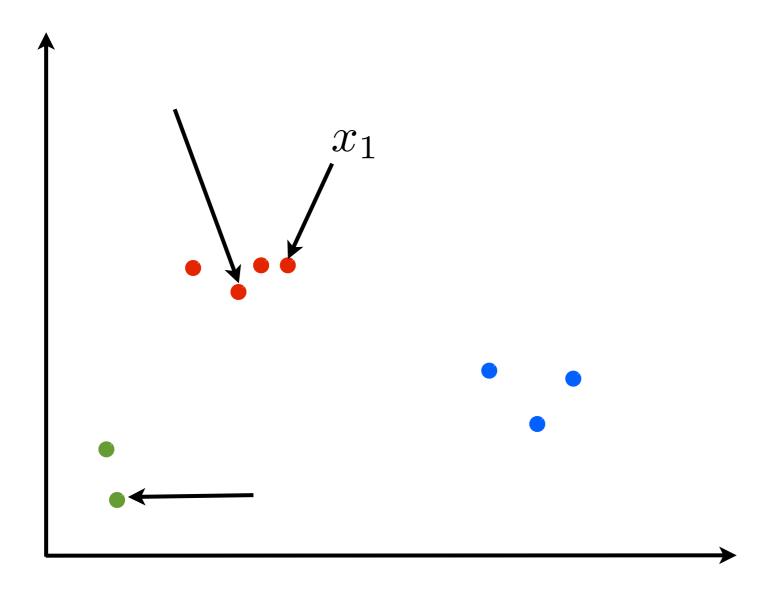
Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

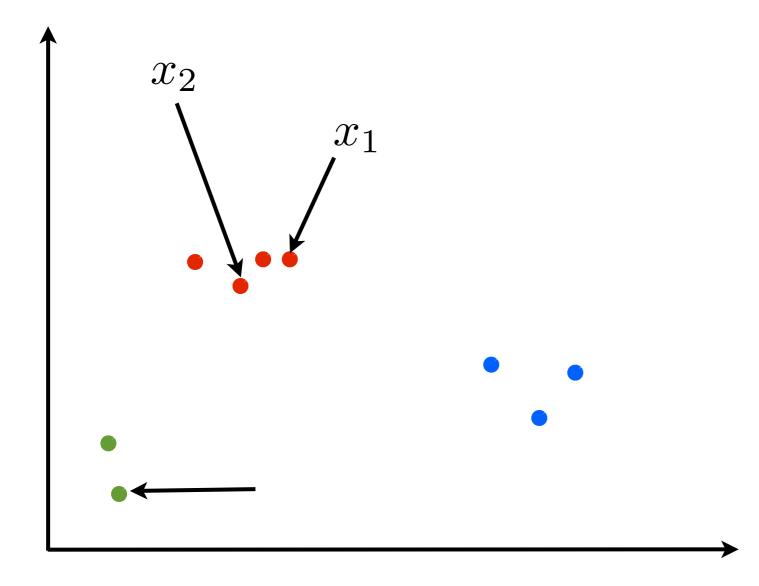
• Exchangeable

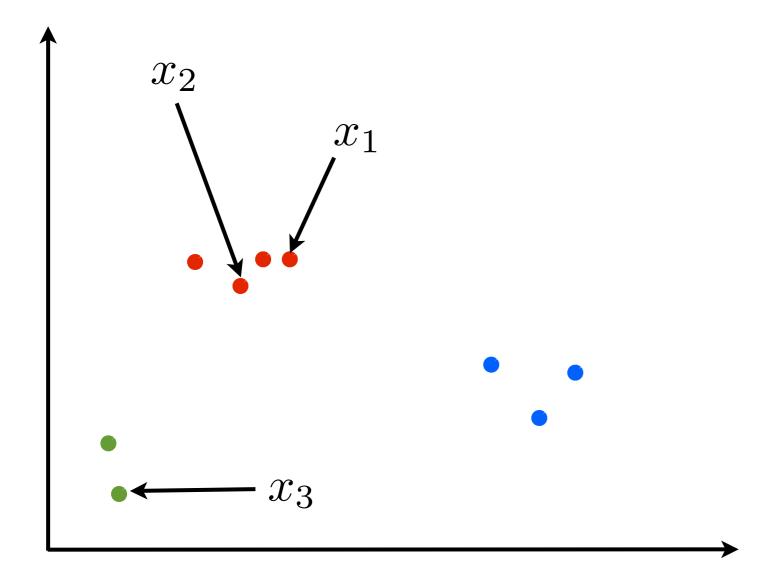
 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

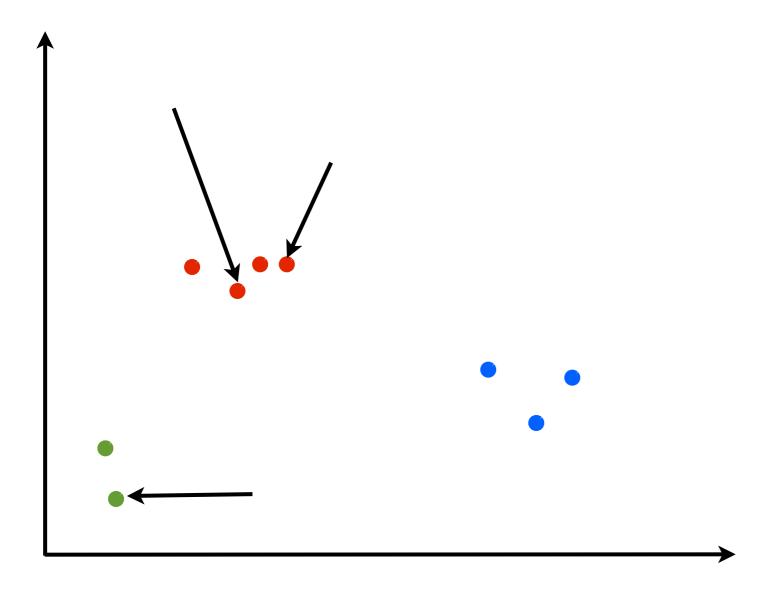


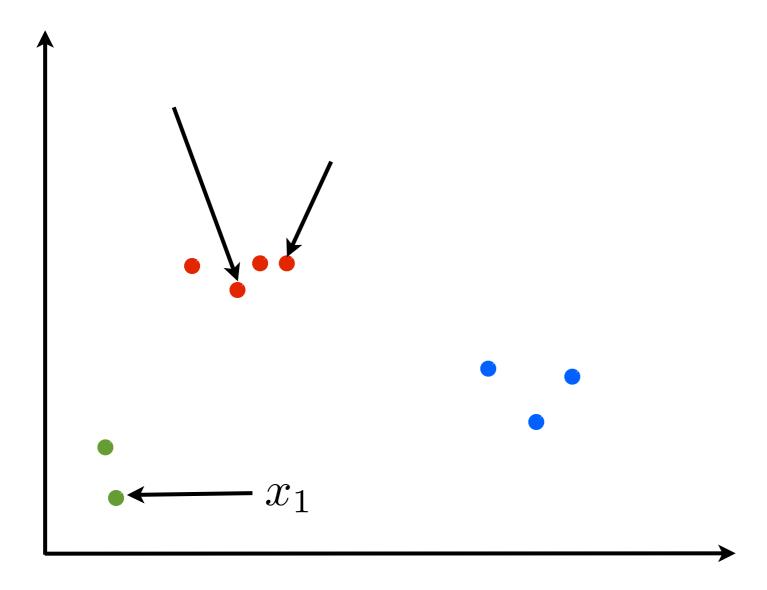


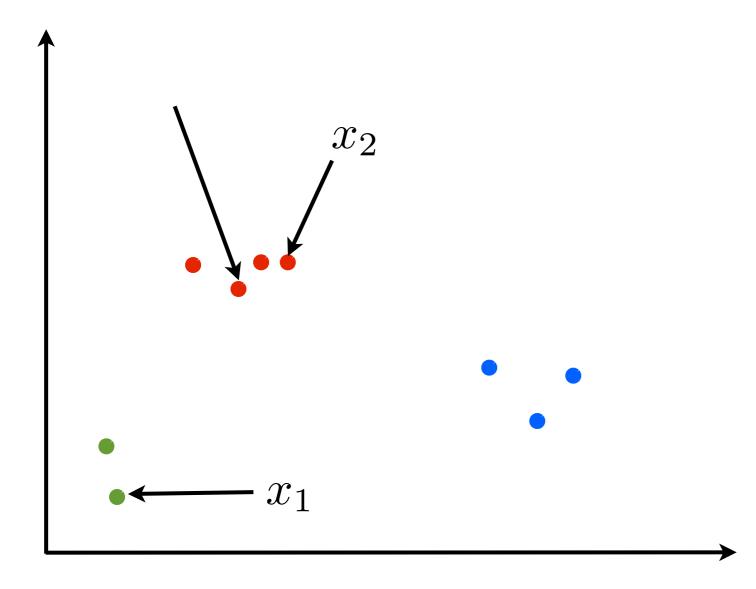


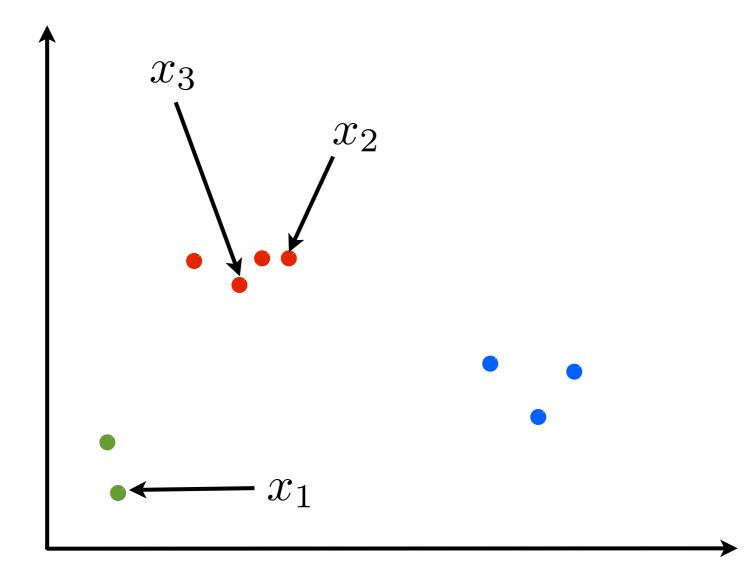












Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

(Almost surely)
 consistent sequence
 of partitions

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

(Almost surely)
 consistent sequence
 of partitions

$$\pi_{10} = \{\{9, 2, 7, 1\}, \\\{8, 4, 6, 10\}, \{5, 3\}\}$$

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

(Almost surely)
 consistent sequence
 of partitions

 $\pi_{10} = \{\{9\}, \{2\}, \{7\}, \{1, 10\} \\ \{8\}, \{4, 5\}, \{6, 3\}\}$

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of 1, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

(Almost surely)
 consistent sequence
 of partitions

 $\pi_{10} = \{\{9\}, \{2\}, \{7\}, \{1, 10\} \\ \{8\}, \{4, 5\}, \{6, 3\}\}$

Random partition

 $\mathbb{P}(\Pi_N = \pi_N)$

Partition of I, 2, ..., 9 $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

• Exchangeable

 $\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9)$ $\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\}$

(Almost surely)
 consistent sequence
 of partitions

$$\pi_{10} = \{\{9, 2, 7, \frac{10}{10}, 1\},\\\{8, 4, 6\}, \{5, 3\}\}$$

• What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?

- What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?
- Take any partition $\pi_N = \{A_1, A_2, \dots, A_K\}$

- What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?
- Take any partition $\pi_N = \{A_1, A_2, \dots, A_K\}$

$$\mathbb{P}(\Pi_N = \pi_N) = p(|A_1|, |A_2|, \dots, |A_K|)$$

- What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?
- Take any partition $\pi_N = \{A_1, A_2, \dots, A_K\}$

$$\mathbb{P}(\Pi_N = \pi_N) = p(|A_1|, |A_2|, \dots, |A_K|)$$

p: symmetric in its arguments

- What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?
- Take any partition $\pi_N = \{A_1, A_2, \dots, A_K\}$

$$\mathbb{P}(\Pi_N = \pi_N) = p(|A_1|, |A_2|, \dots, |A_K|)$$

p: symmetric in its arguments
"Exchangeable partition probability function"
(EPPF)

[Pitman 1995]

Outline

I. Clusters

Overview

Distribution

- ♦ Clusters
- ♦ Data given clusters
- ♦ Posterior
- Proportions
- Random probability measure

II. Features

Outline

I. Clusters

- Overview
- Distribution
 - Clusters (Example: Chinese restaurant process)
 - ♦ Data given clusters
 - ♦ Posterior
- Proportions
- Random probability measure

II. Features

Chinese restaurant process

Chinese restaurant process

• Restaurant \Leftrightarrow partition

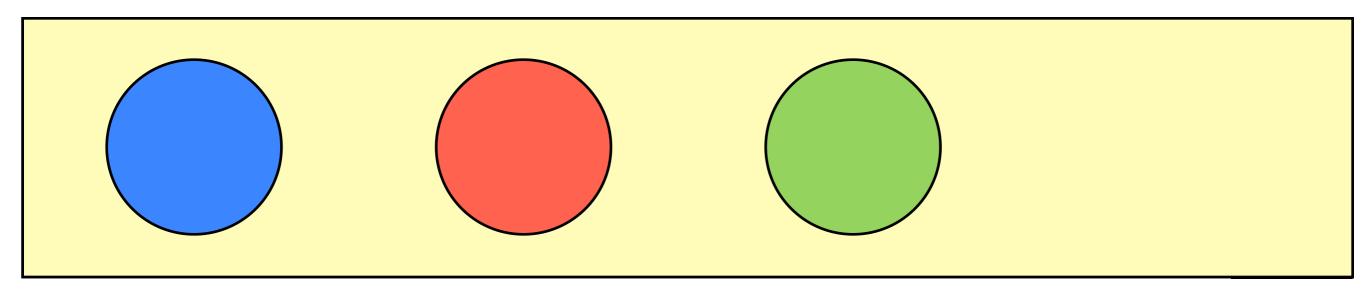
Chinese restaurant process

• Restaurant \Leftrightarrow partition

- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster

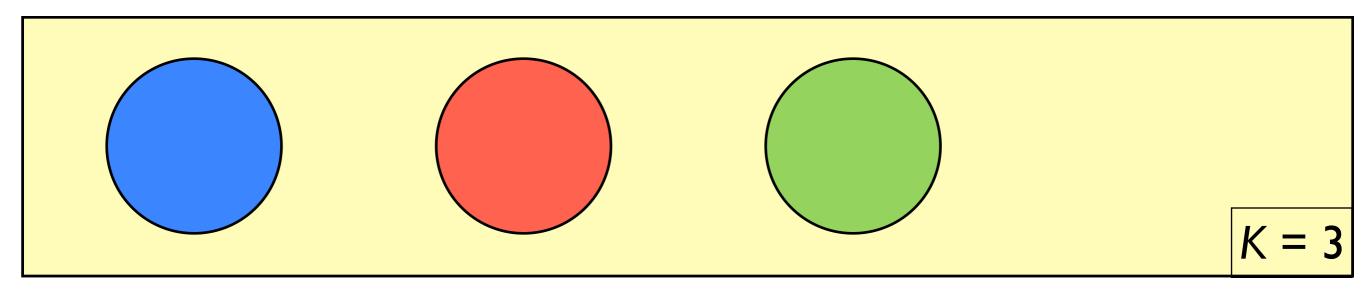
Chinese restaurant process

- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster

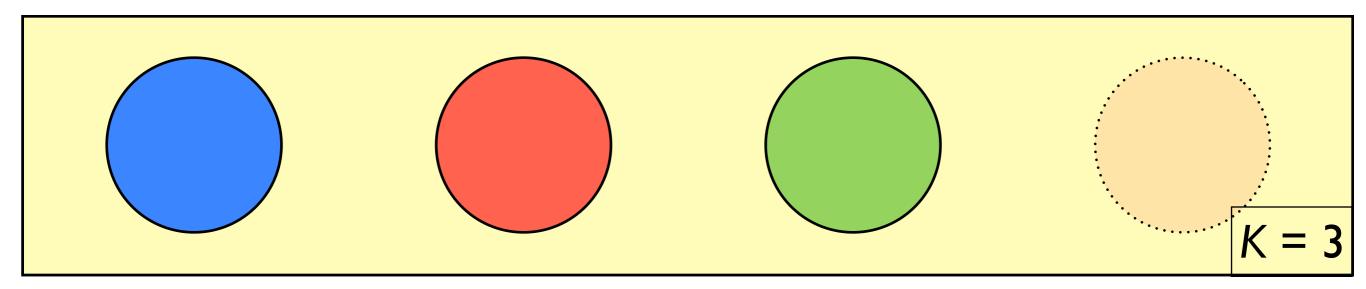


Chinese restaurant process

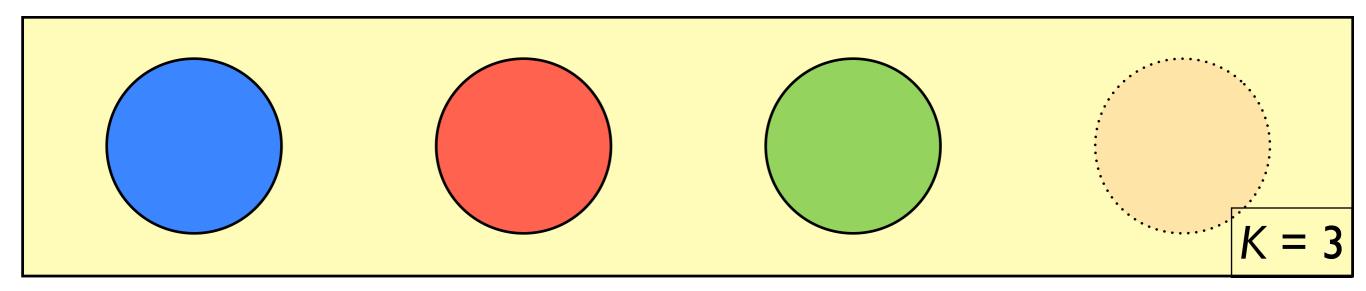
- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster



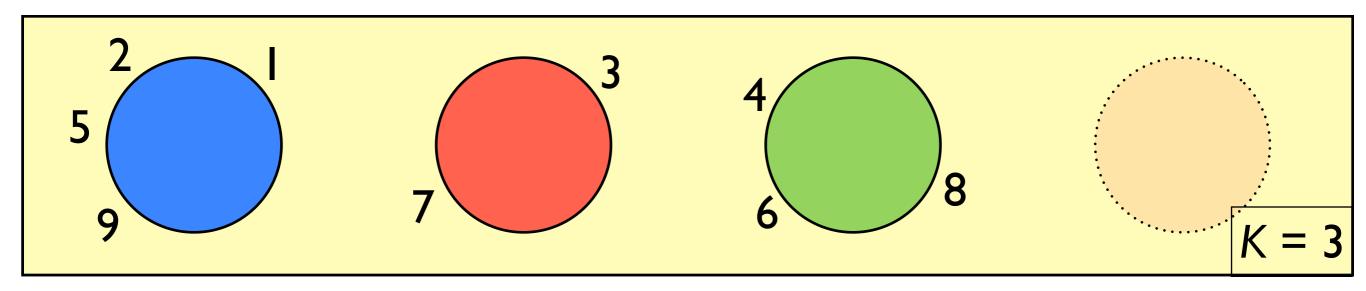
- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster



- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster
 - Customer \Leftrightarrow index

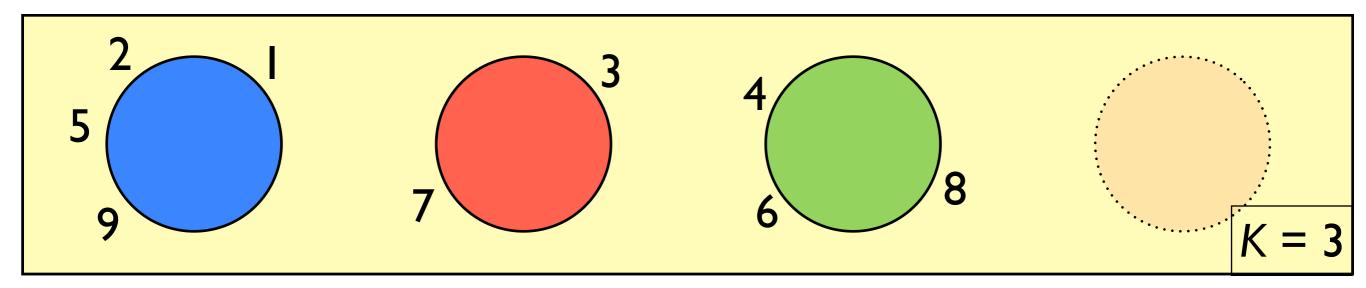


- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster
 - Customer \Leftrightarrow index



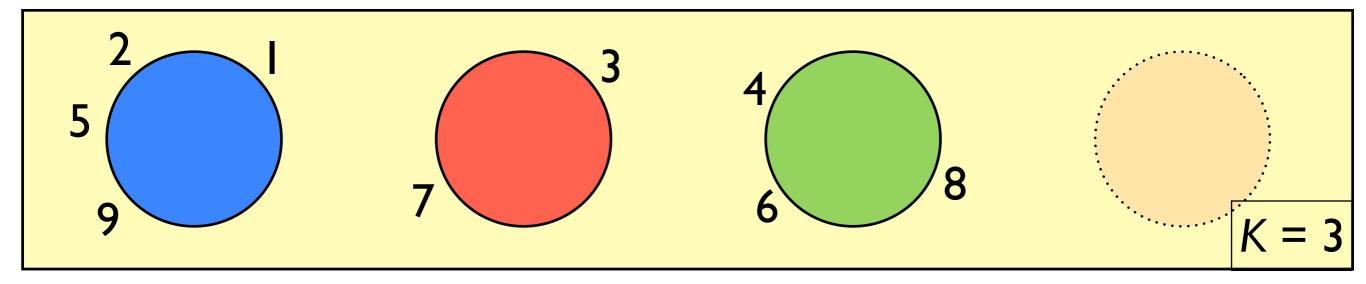
Chinese restaurant process

- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster
 - Customer \Leftrightarrow index

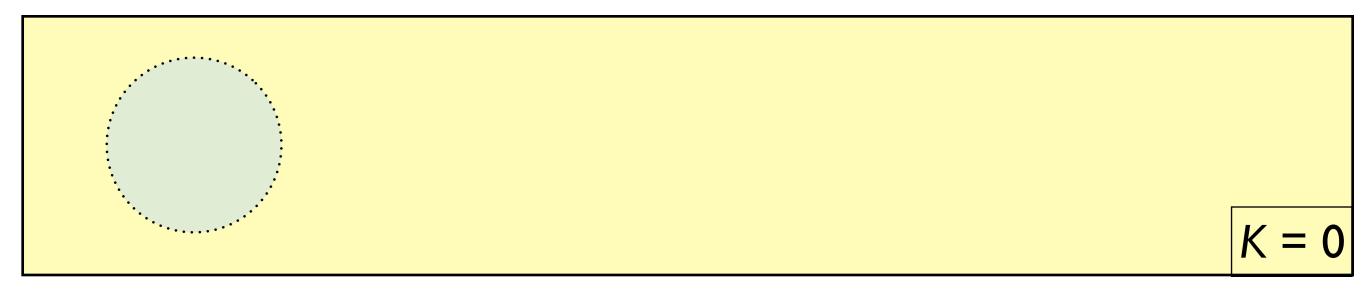


$$\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\}\$$

Chinese restaurant process

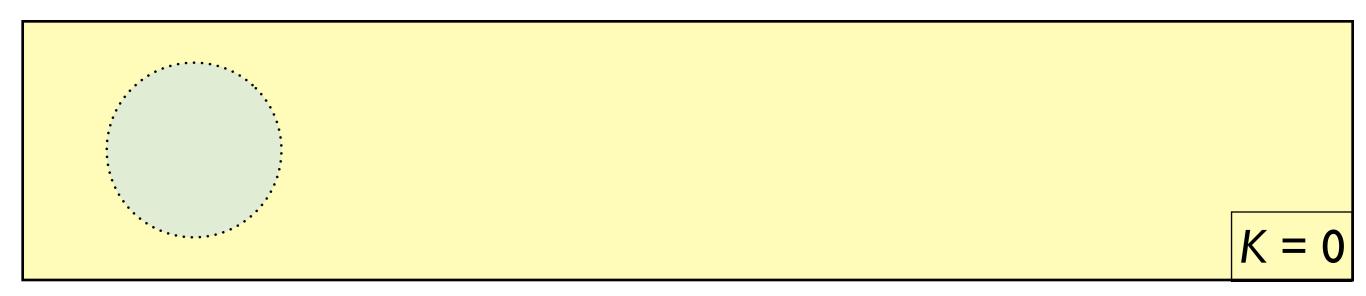


Chinese restaurant process



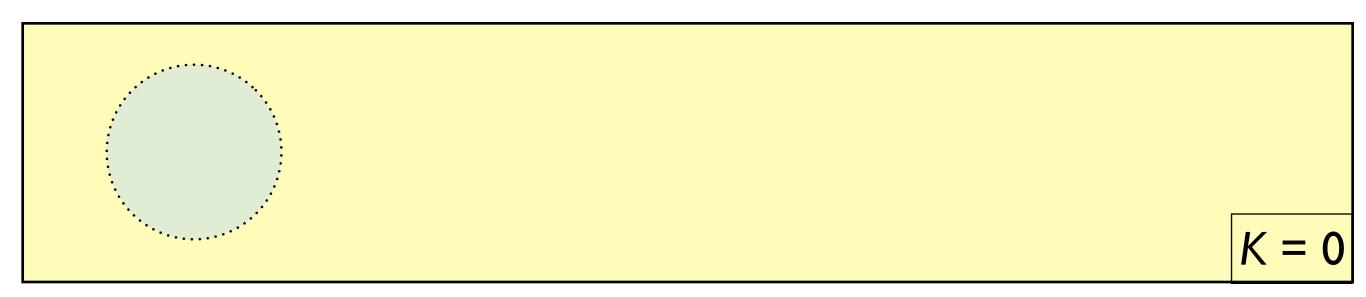
Chinese restaurant process

Customers prefer popular tables

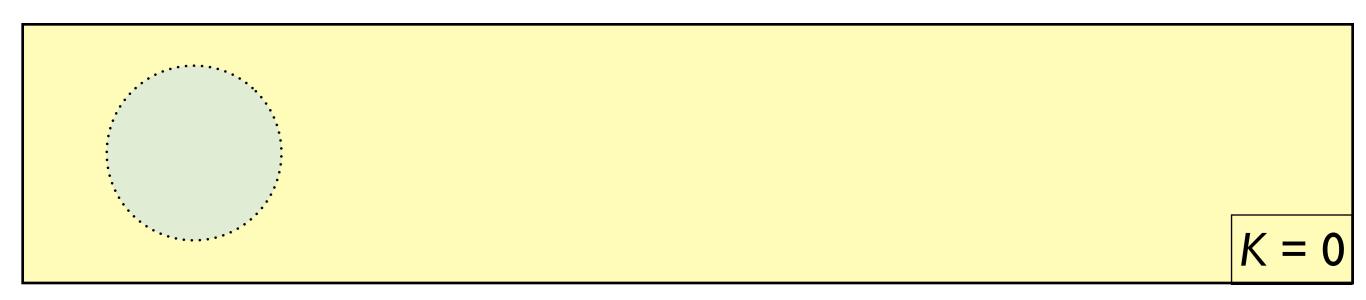


Chinese restaurant process

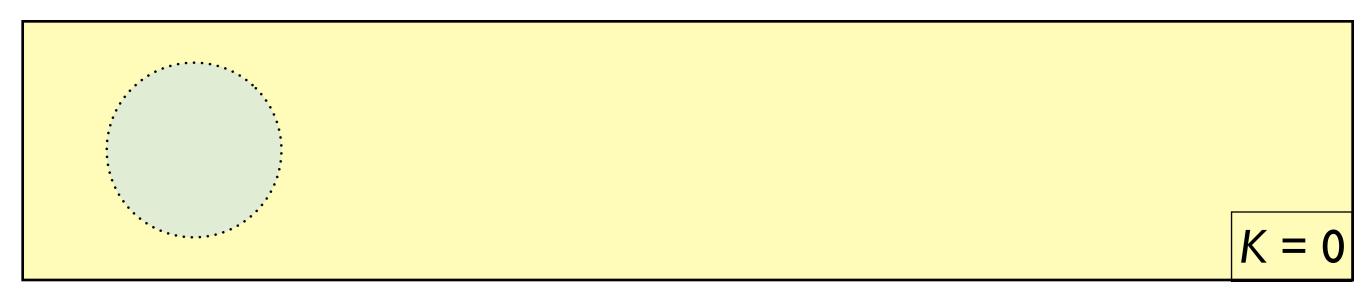
• Recursively: nth person sits



- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$

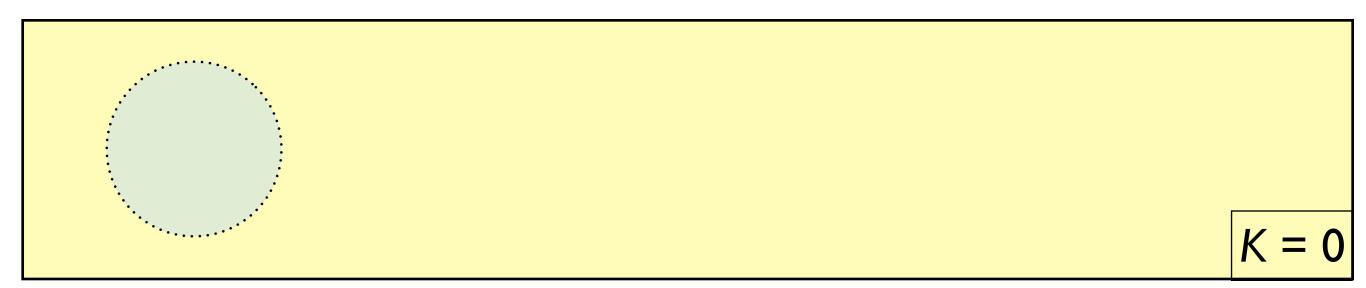


- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$



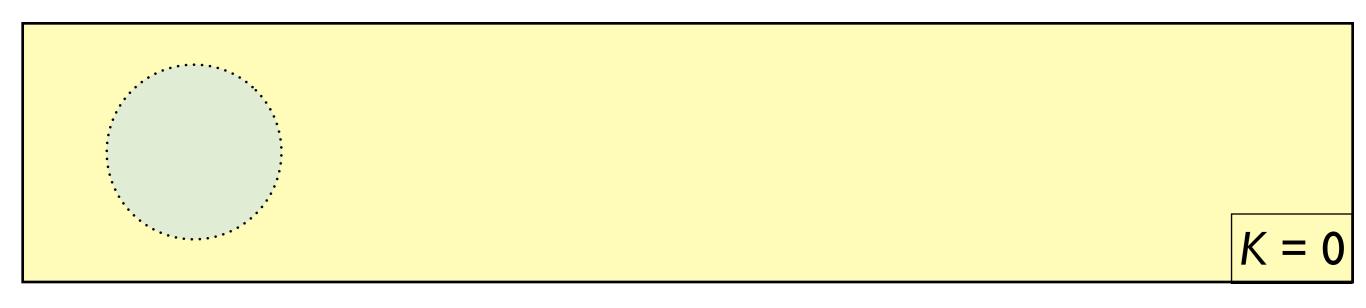
Chinese restaurant process concentration parameter

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta^{\prime}$



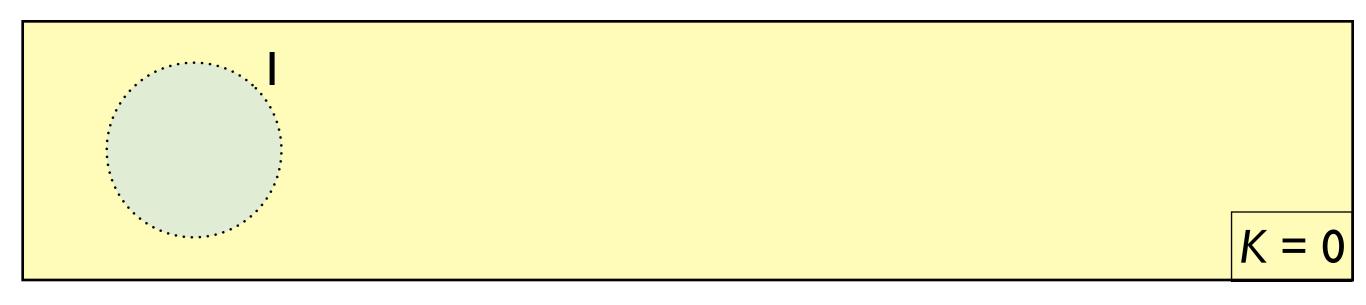
 θ

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$



 θ

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

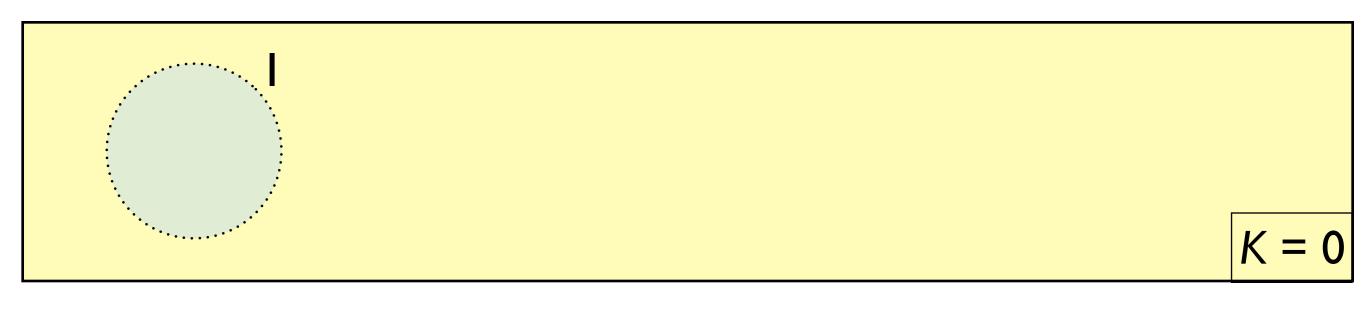


 θ

Ā

 $\mathbb{P}(\Pi_1 = \pi_1) = 1$

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

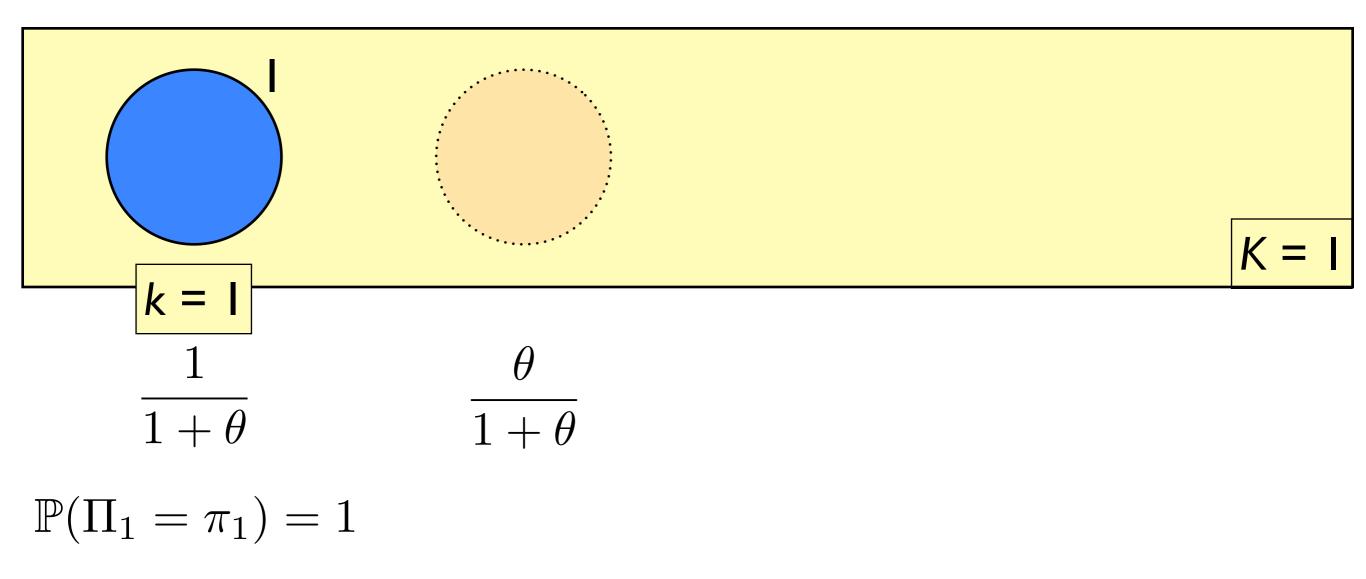


 $\mathbb{P}(\Pi_1 = \pi_1) = 1$

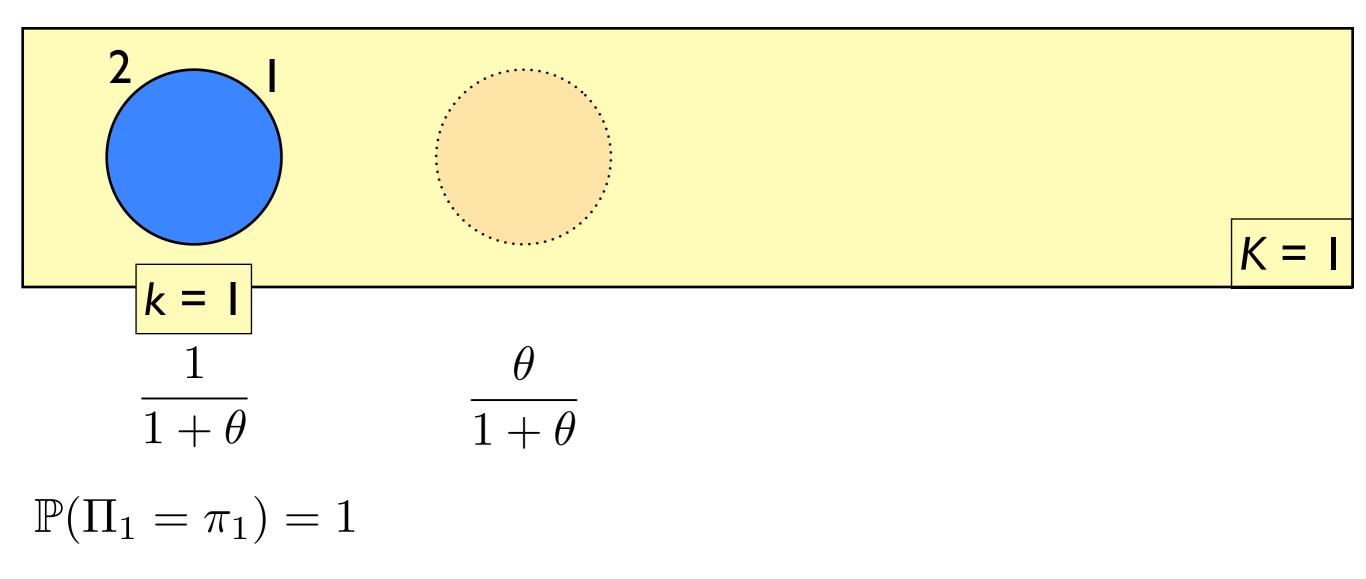
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



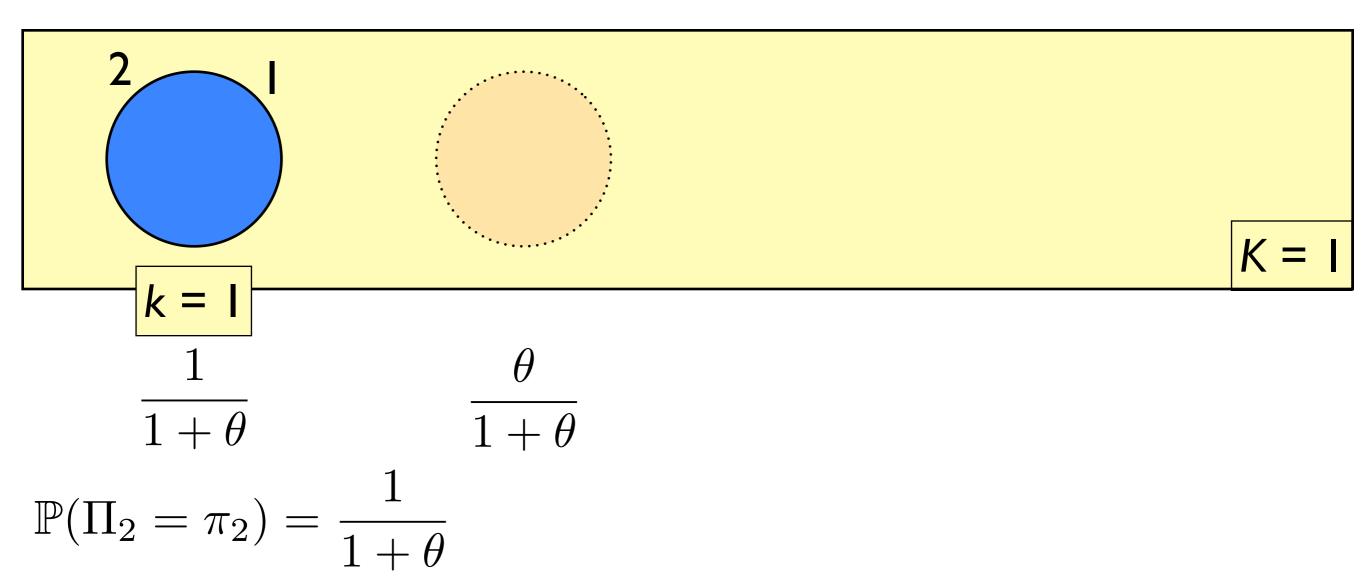
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



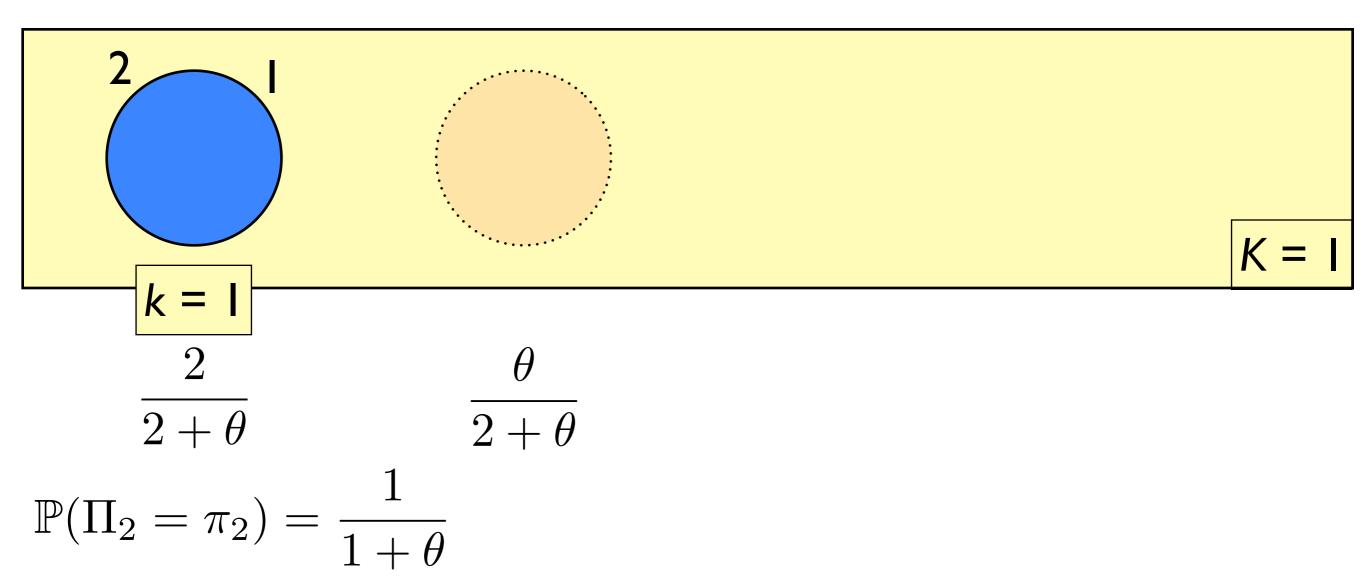
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



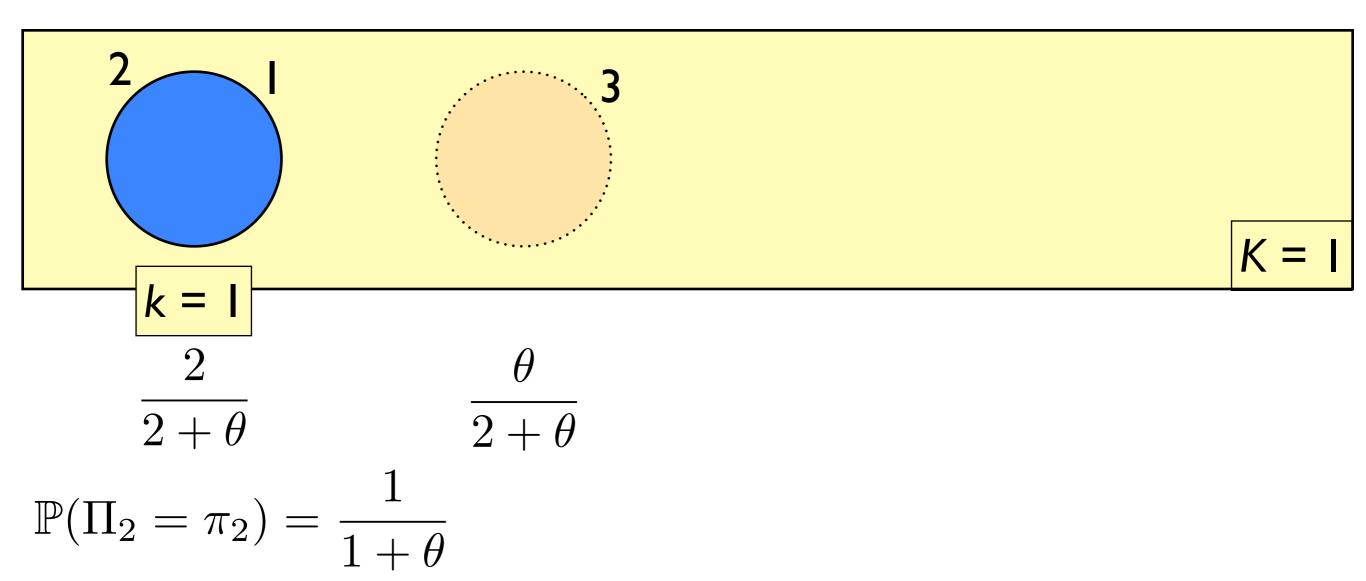
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



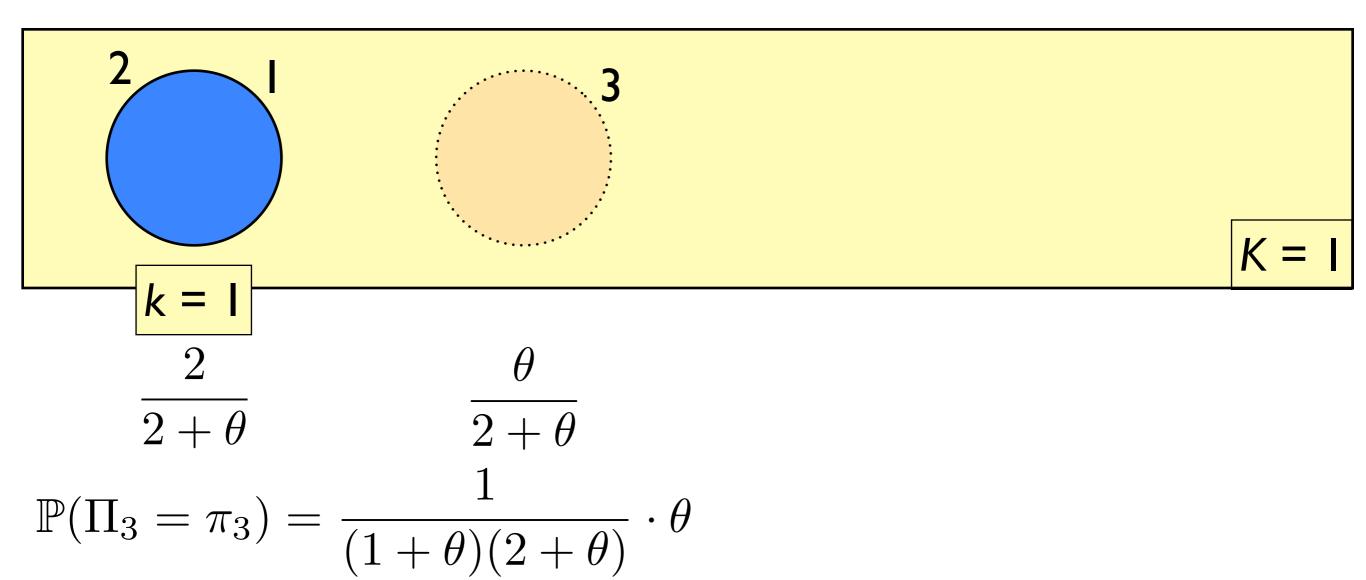
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



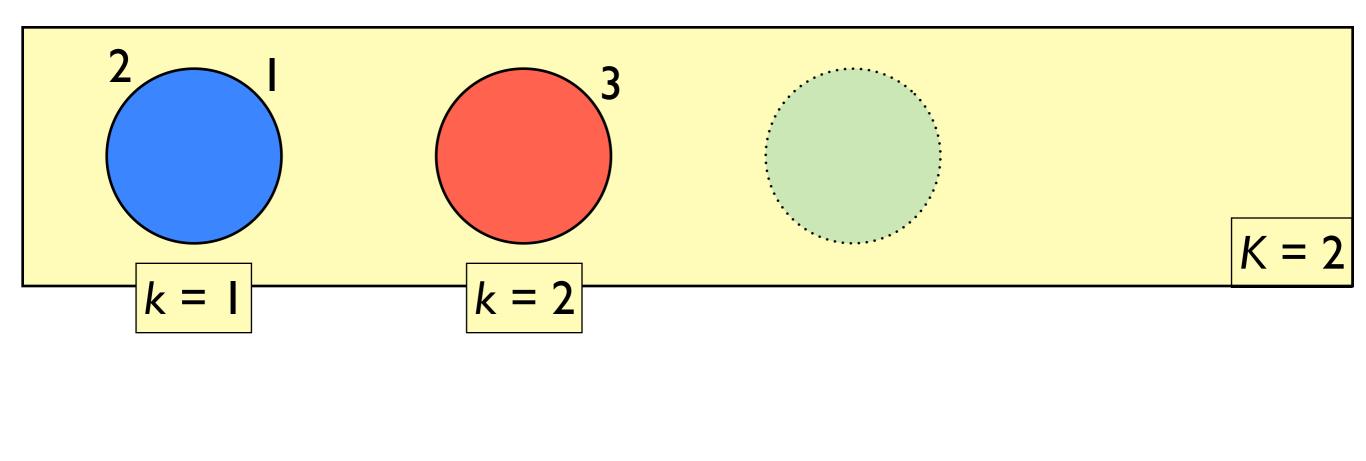
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$

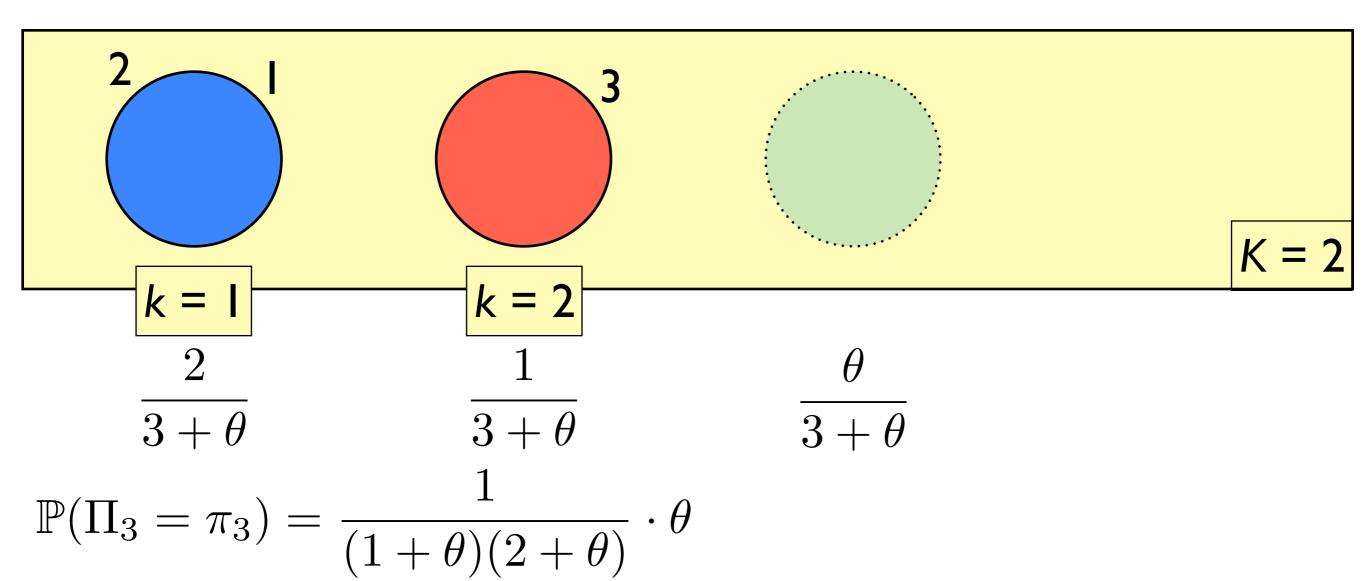


- Recursively: nth person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto heta$

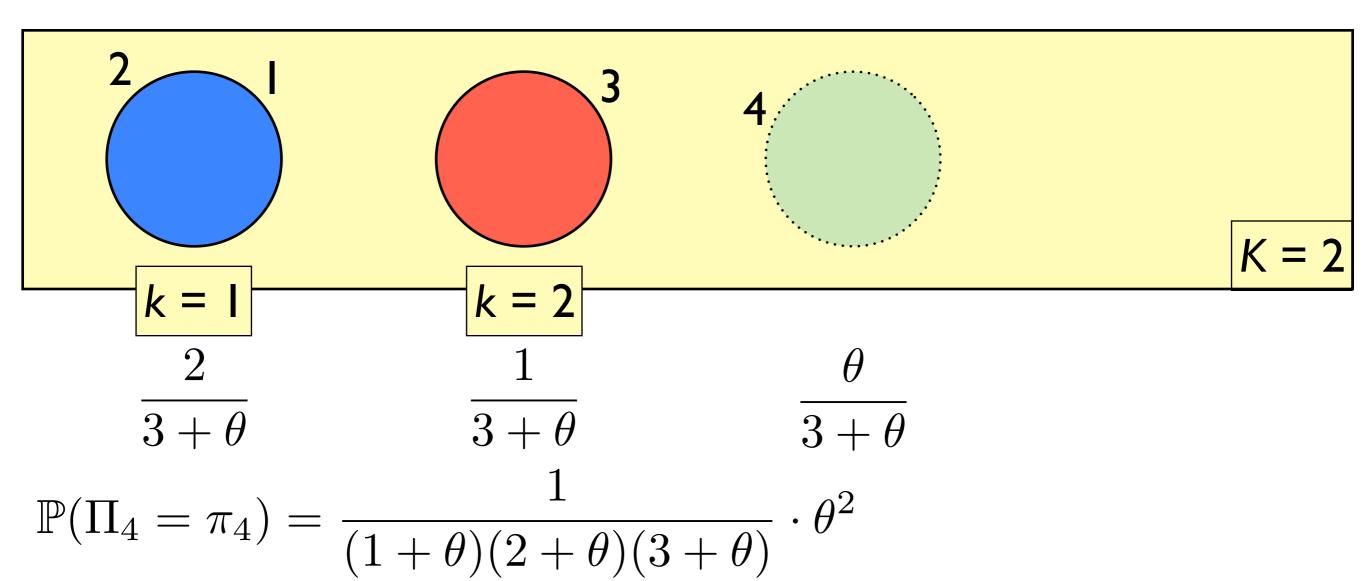


$$\mathbb{P}(\Pi_3 = \pi_3) = \frac{1}{(1+\theta)(2+\theta)} \cdot \theta$$

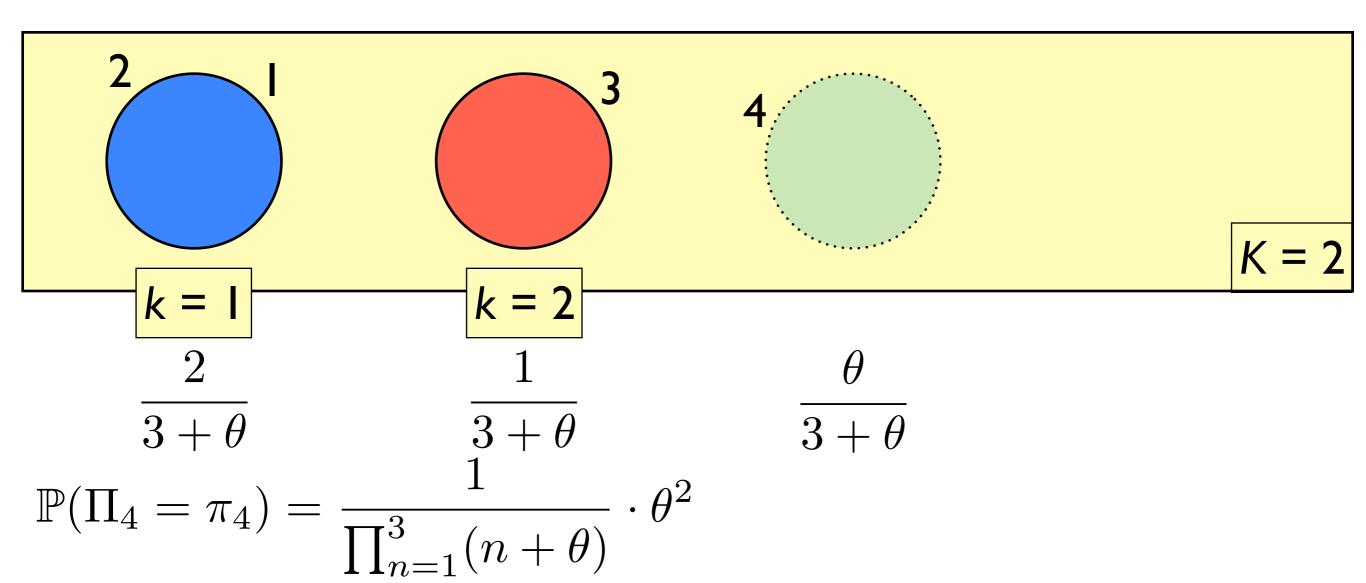
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



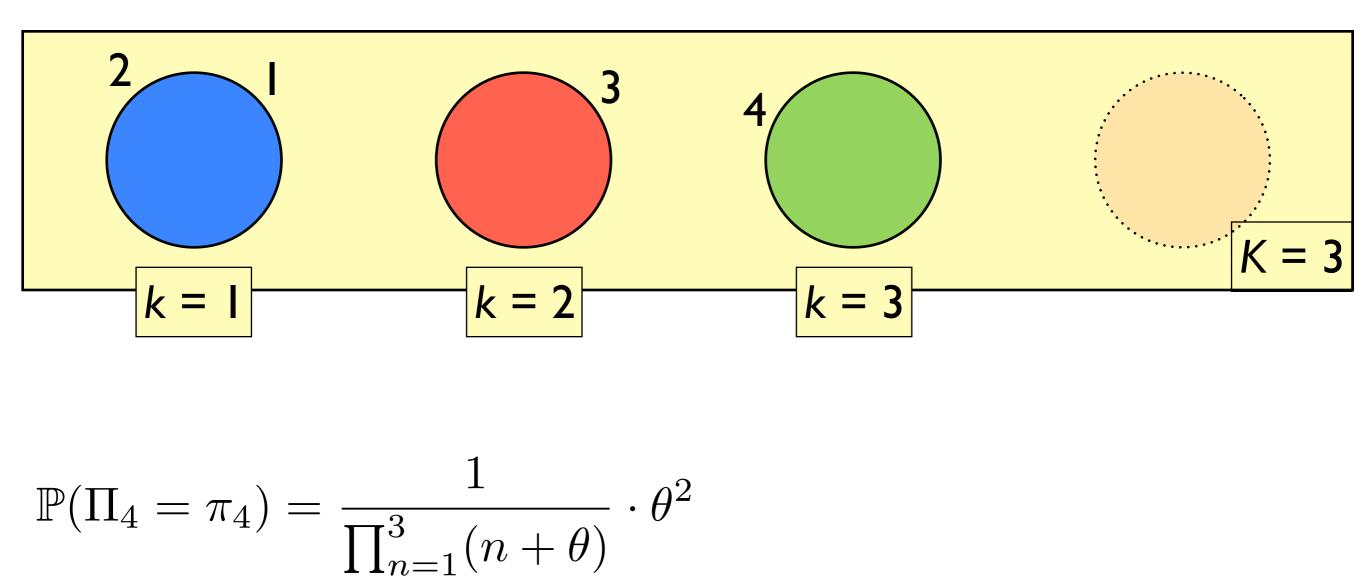
- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$



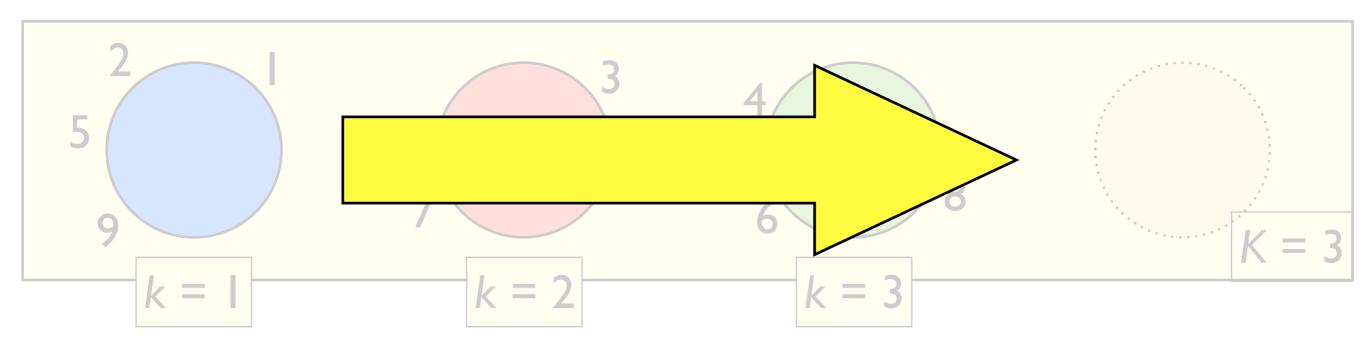
- Recursively: nth person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto heta$



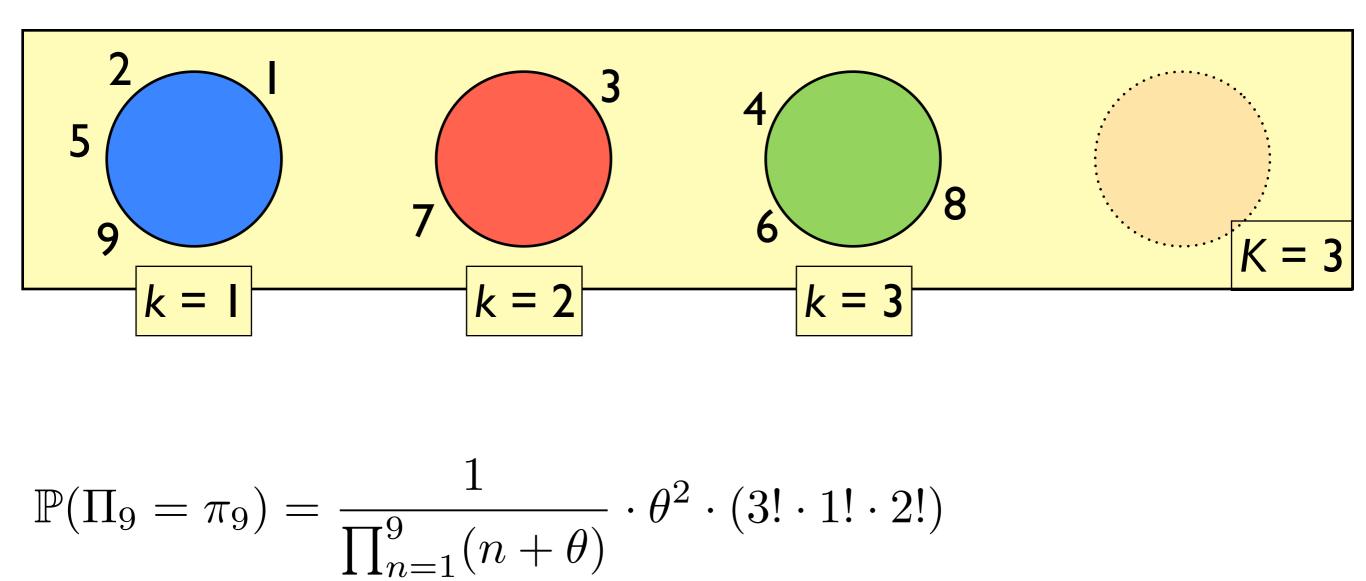
- Recursively: nth person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto heta$



- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto heta$



- Recursively: nth person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto heta$



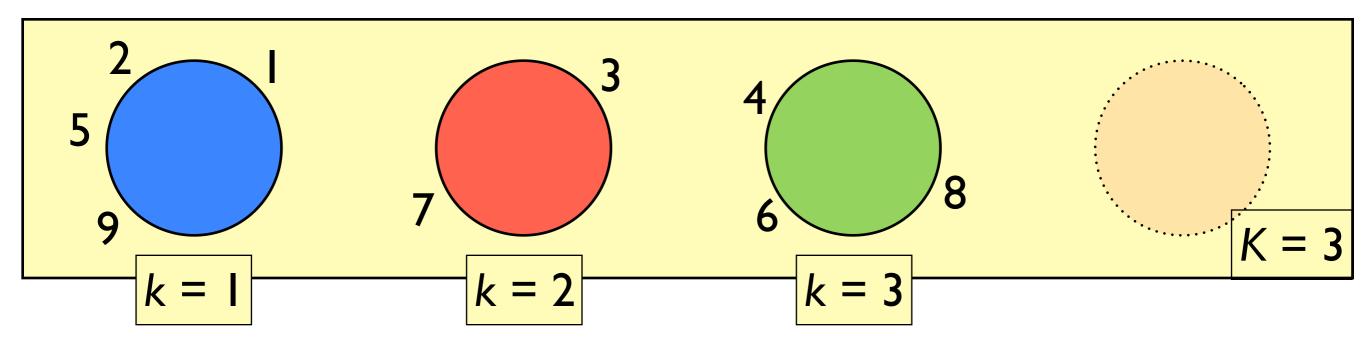
Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$

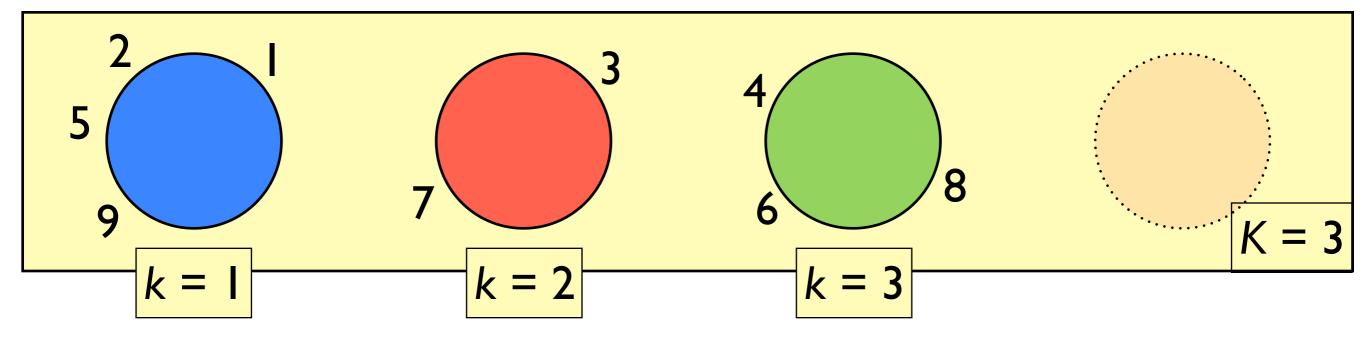
related to number

of clusters

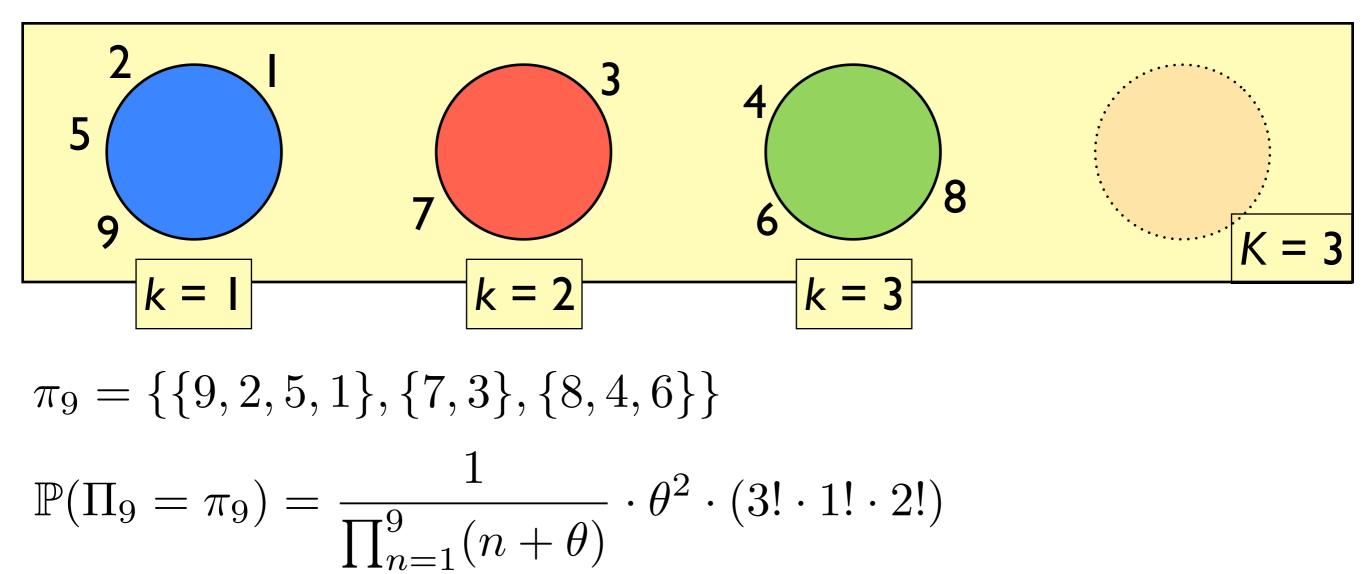
• at new table K+1 with probability $\propto \theta^{*}$

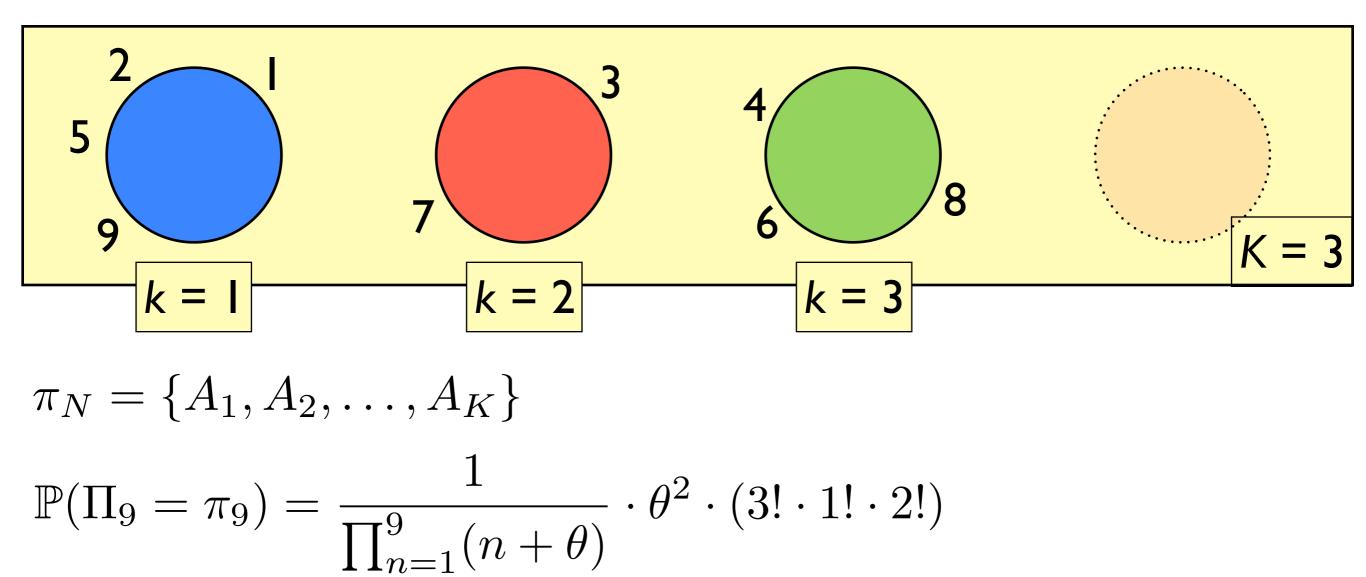


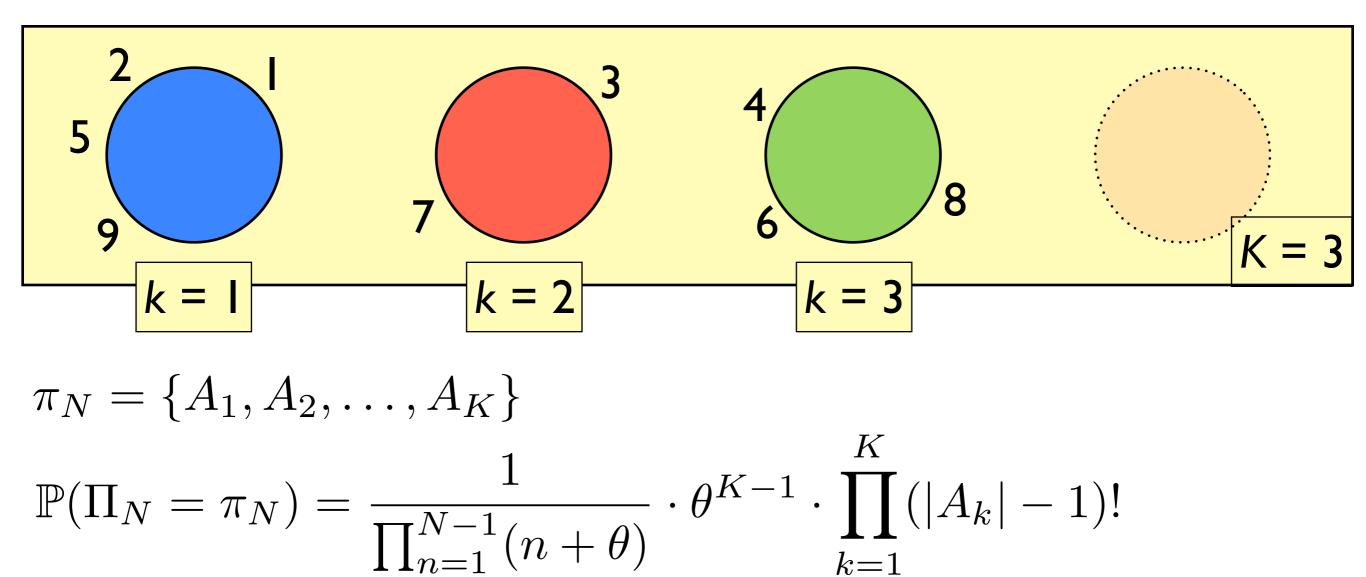
$$\mathbb{P}(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^9 (n+\theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!)$$

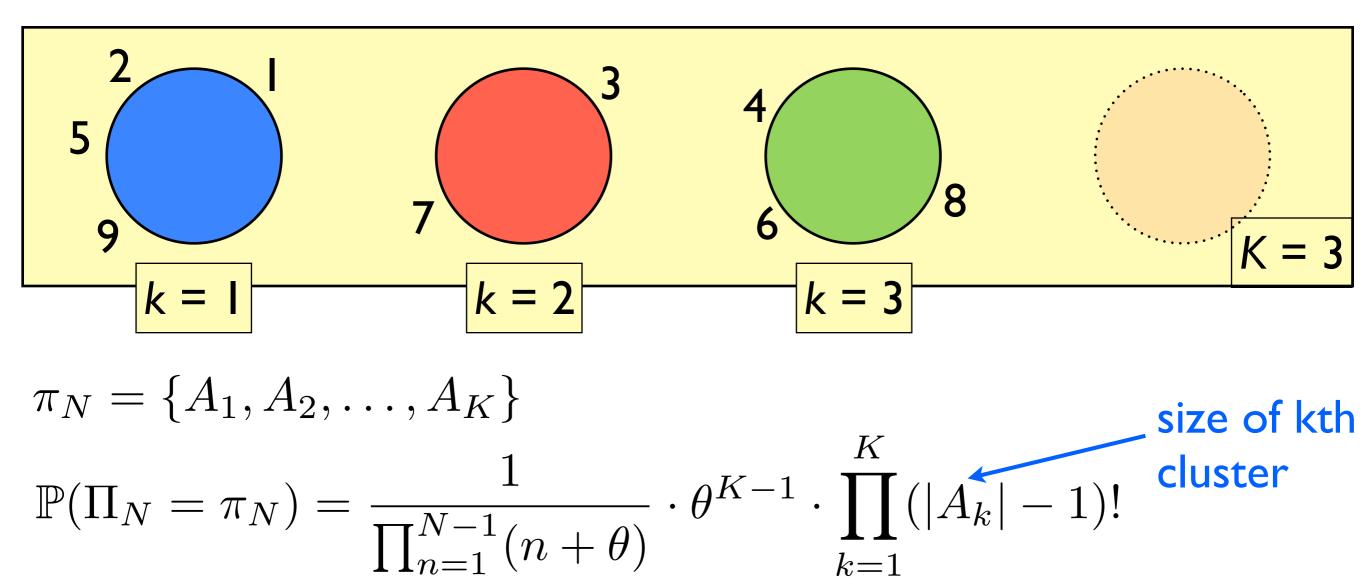


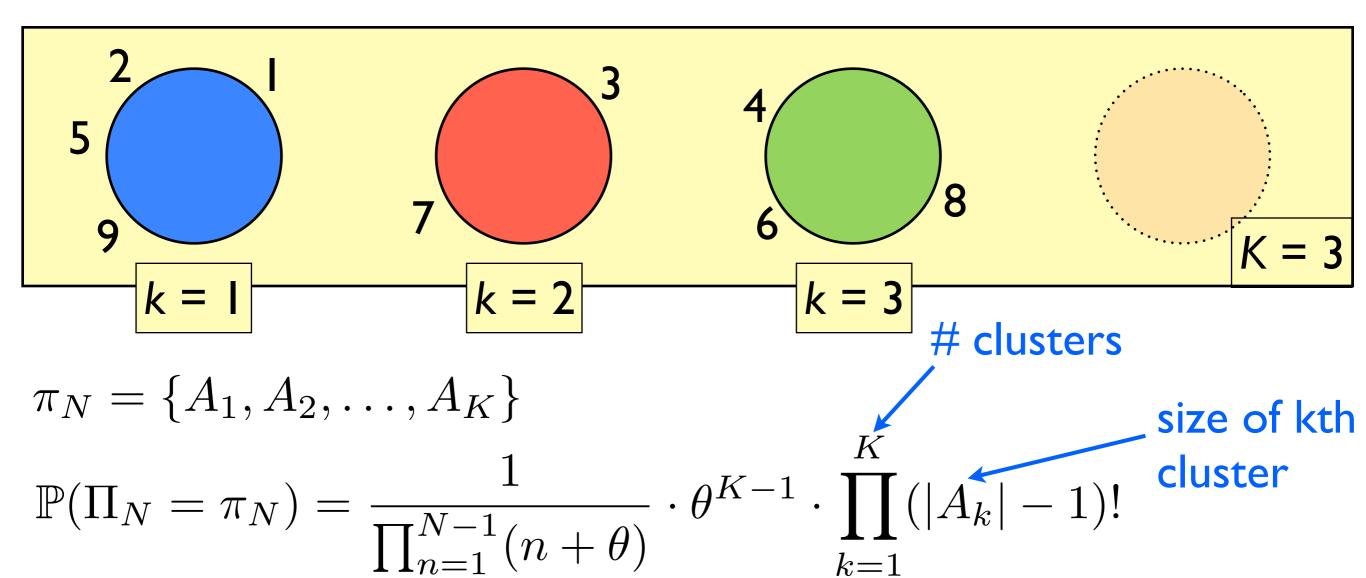
$$\mathbb{P}(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^9 (n+\theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!)$$

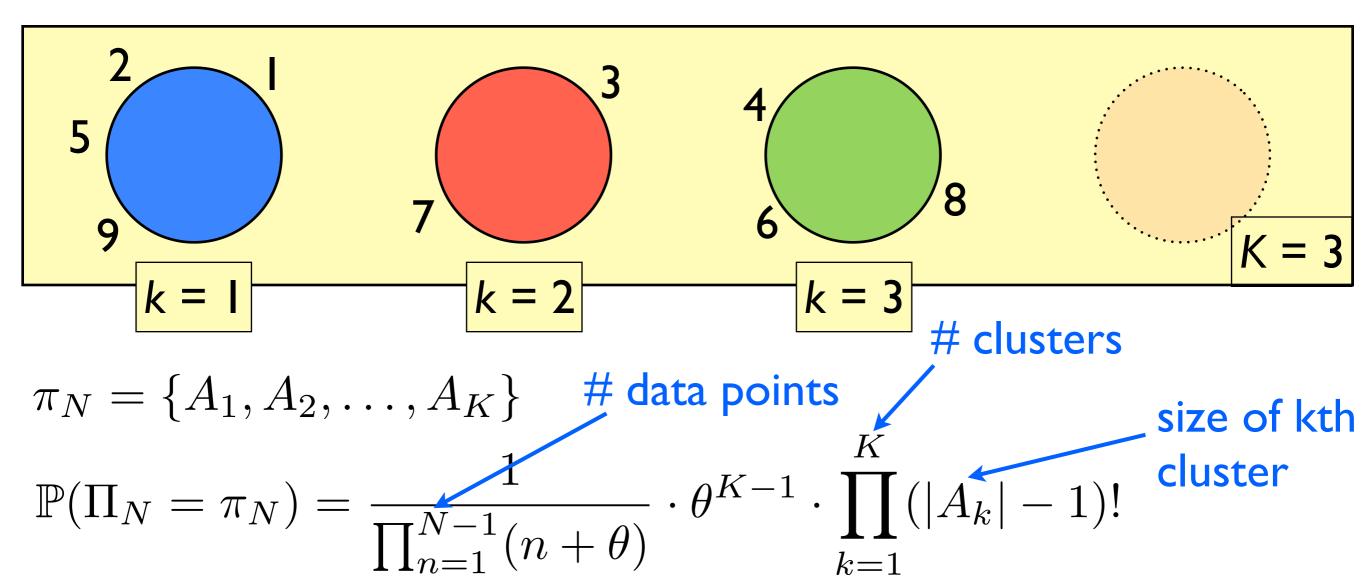


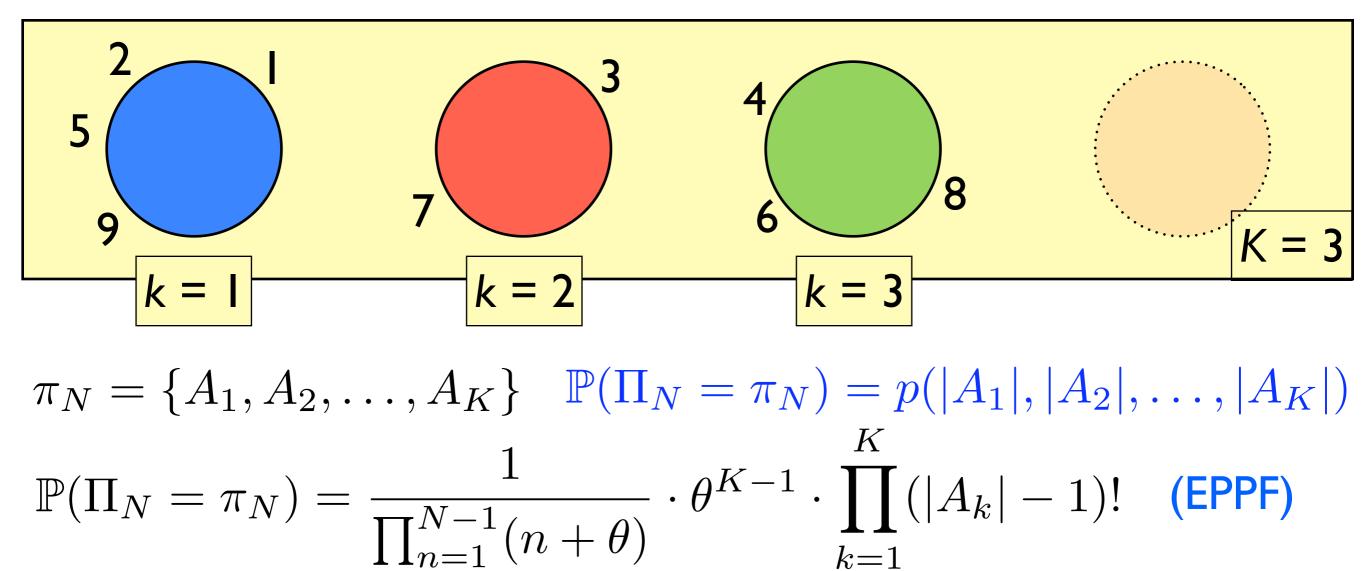


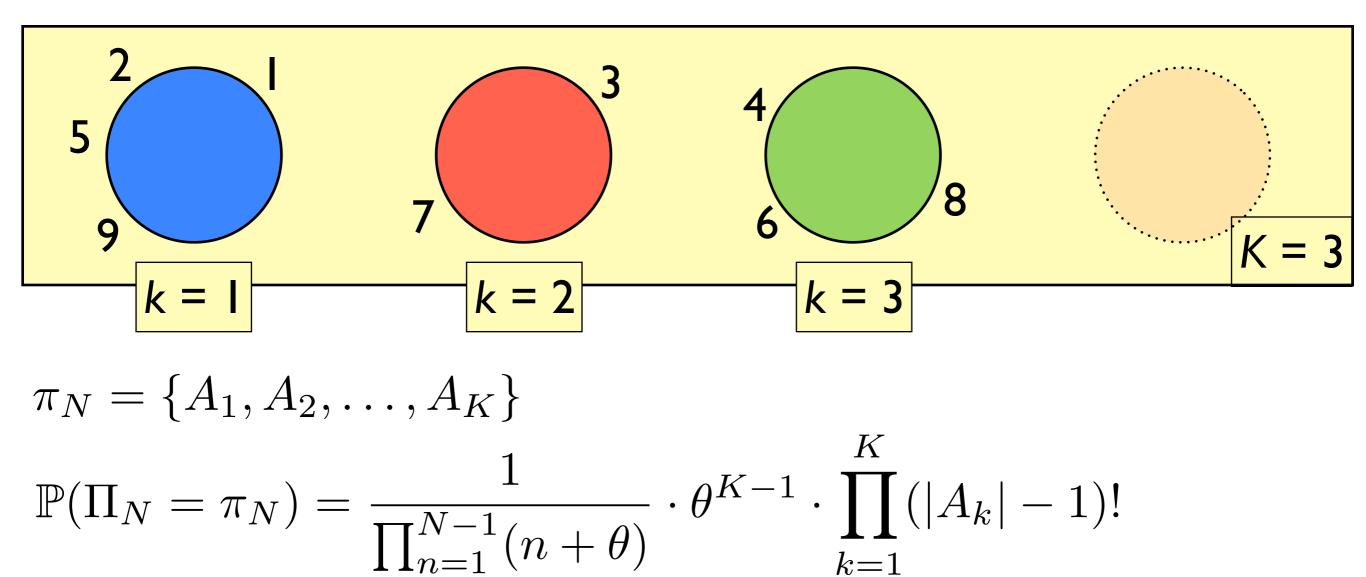






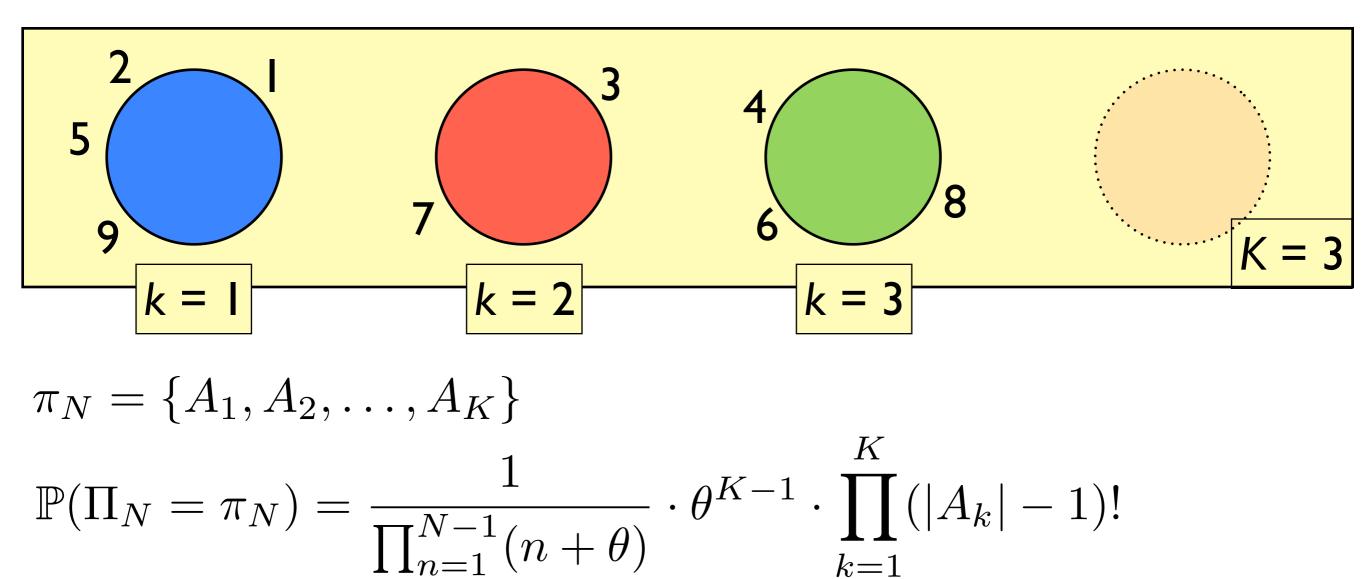




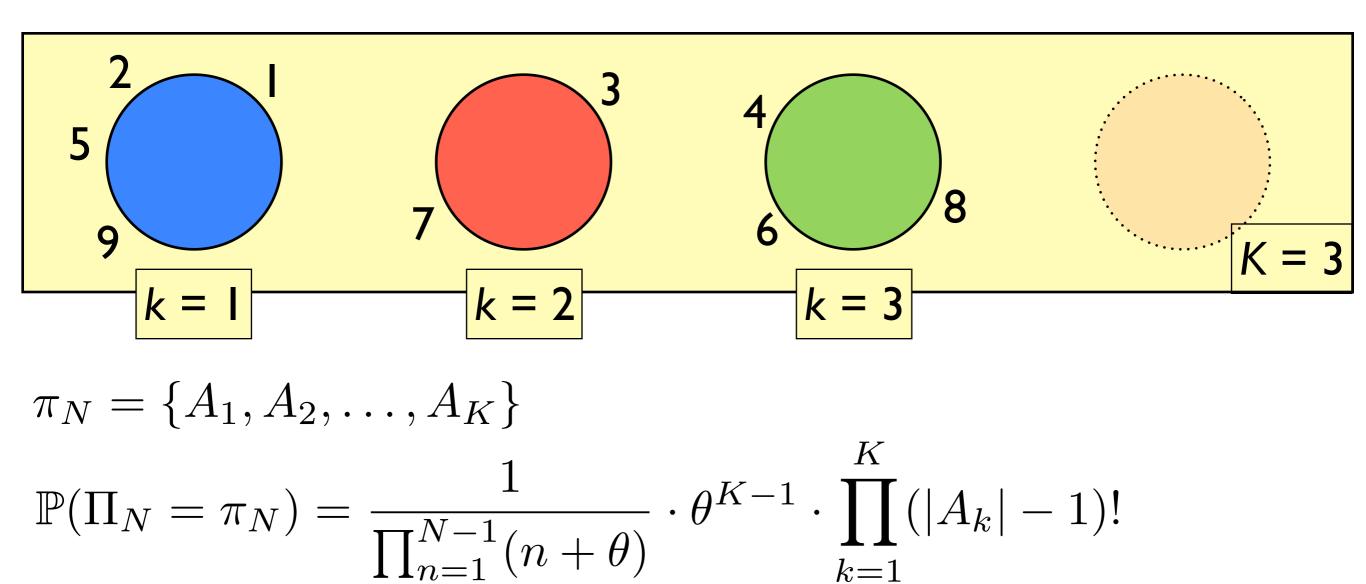


Chinese restaurant process

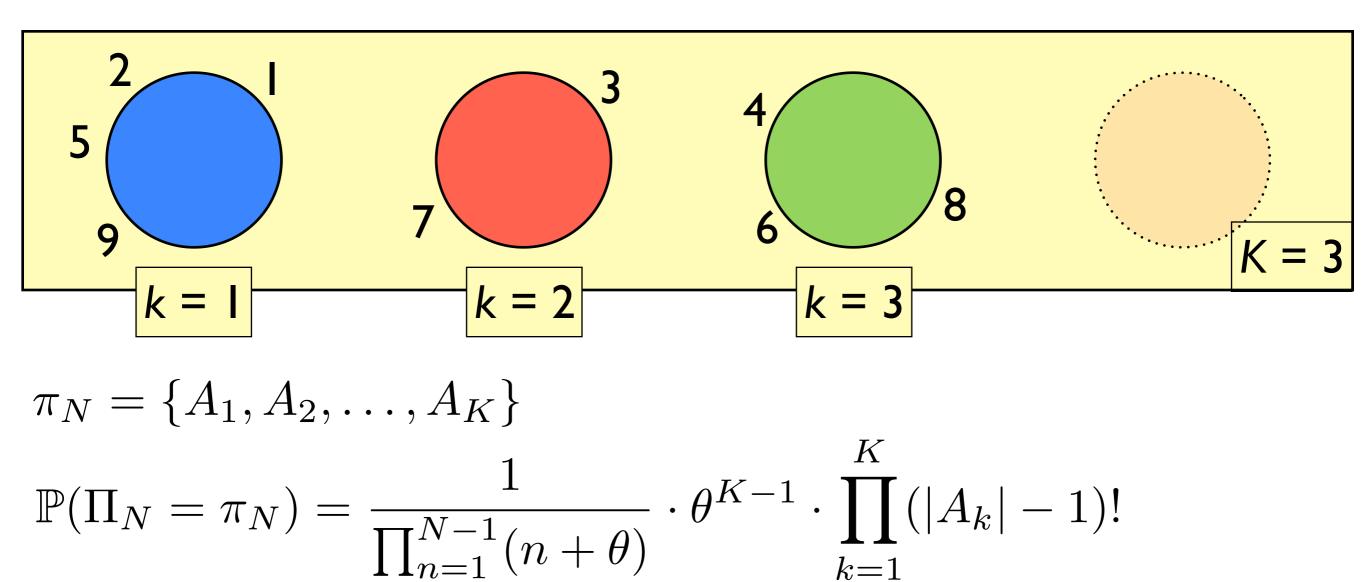
• Exchangeable



- Exchangeable
- Consistent



- Exchangeable
- Consistent
- Random number of clusters



I. Clusters

- Overview
- Distribution
 - Clusters (Example: Chinese restaurant process)
 - ♦ Data given clusters
 - ♦ Posterior
- Proportions
- Random probability measure

I. Clusters

Overview

Distribution

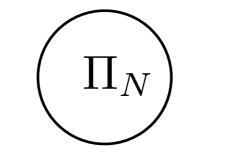
- Clusters (Example: Chinese restaurant process)
- Data given clusters
- ♦ Posterior
- Proportions
- Random probability measure

I. Clusters

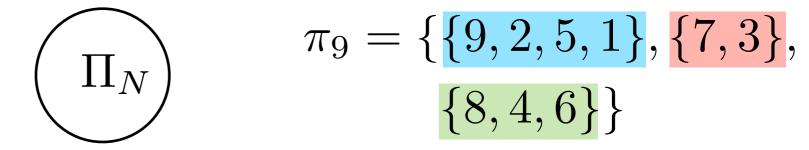
Overview

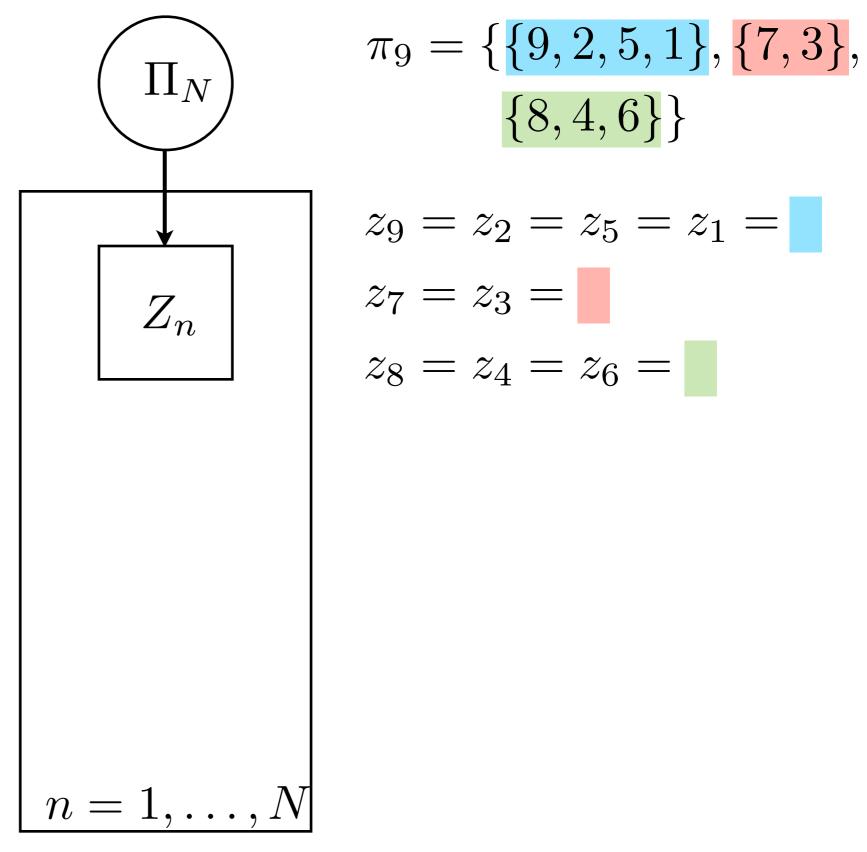
Distribution

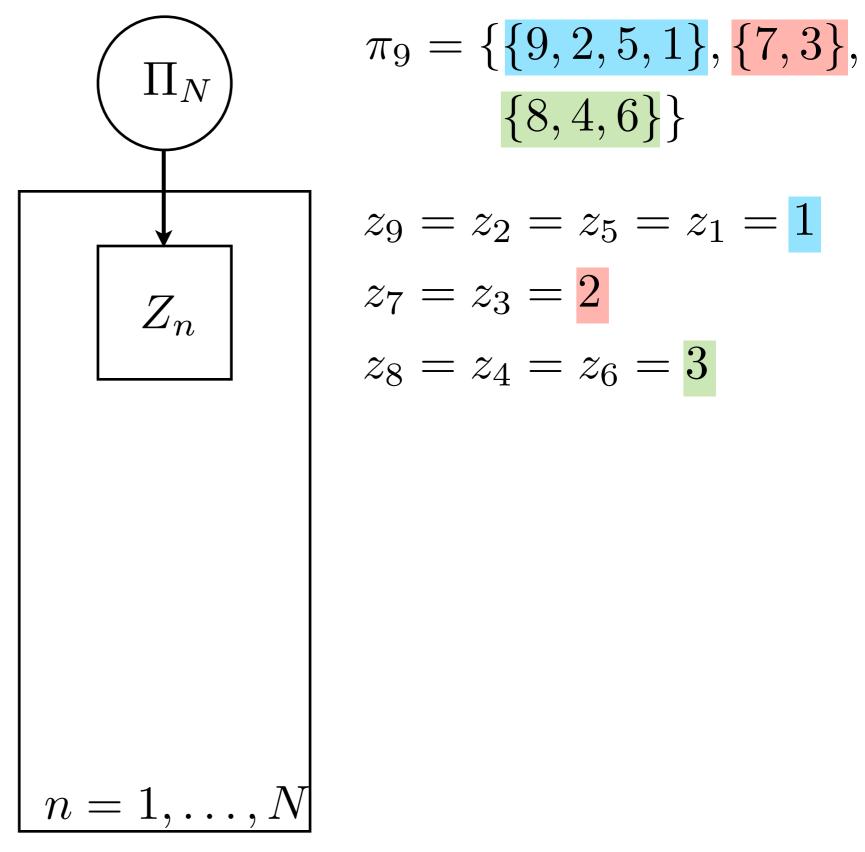
- Clusters (Example: Chinese restaurant process)
- Data given clusters (Example: Gaussian mixture)
- ♦ Posterior
- Proportions
- Random probability measure

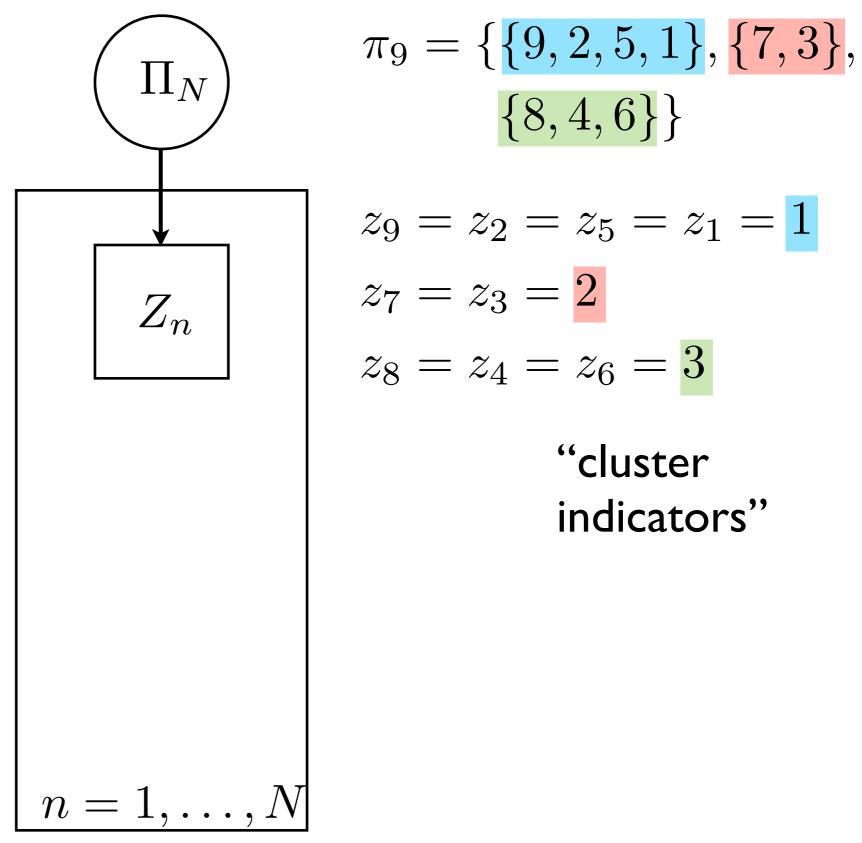


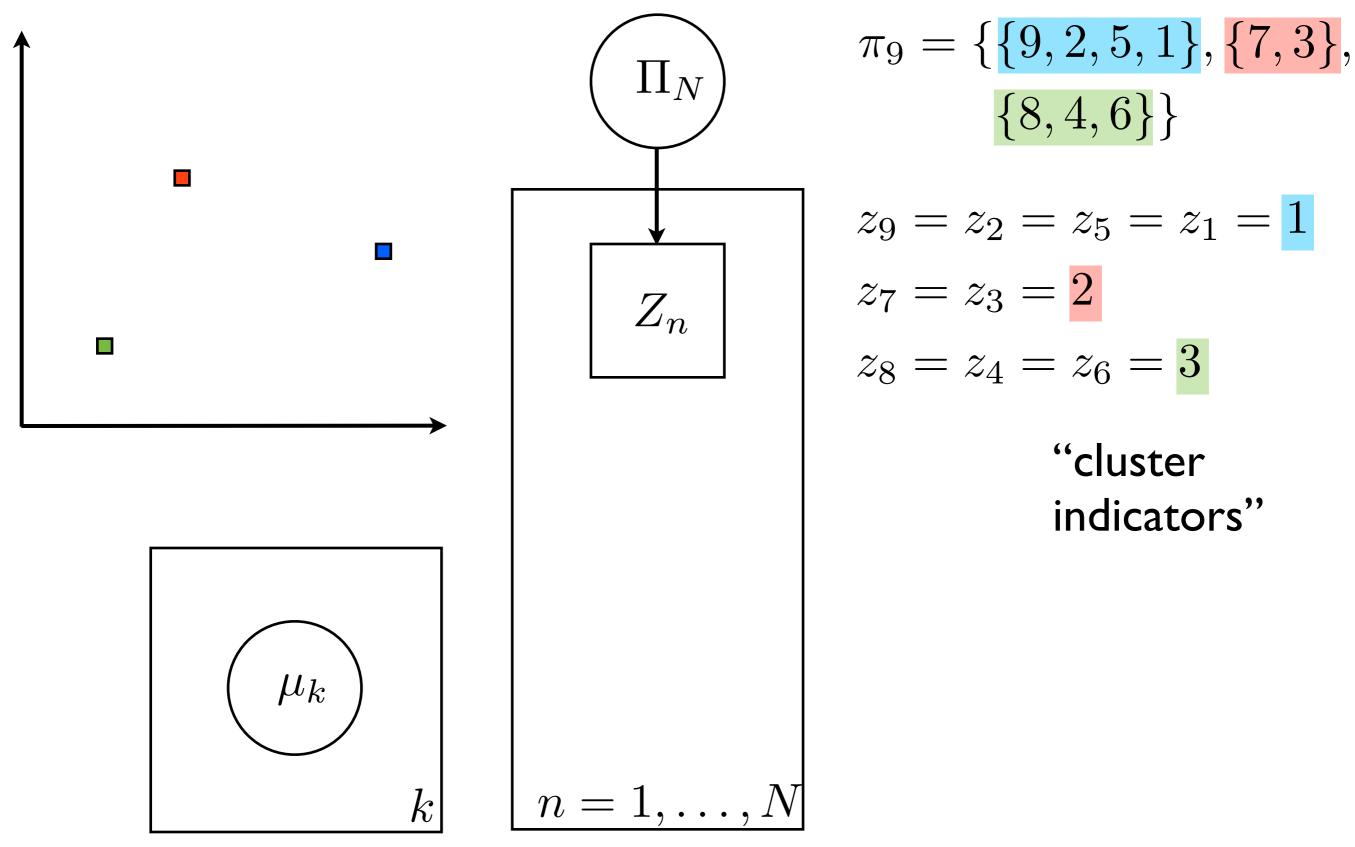
 $\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\}$

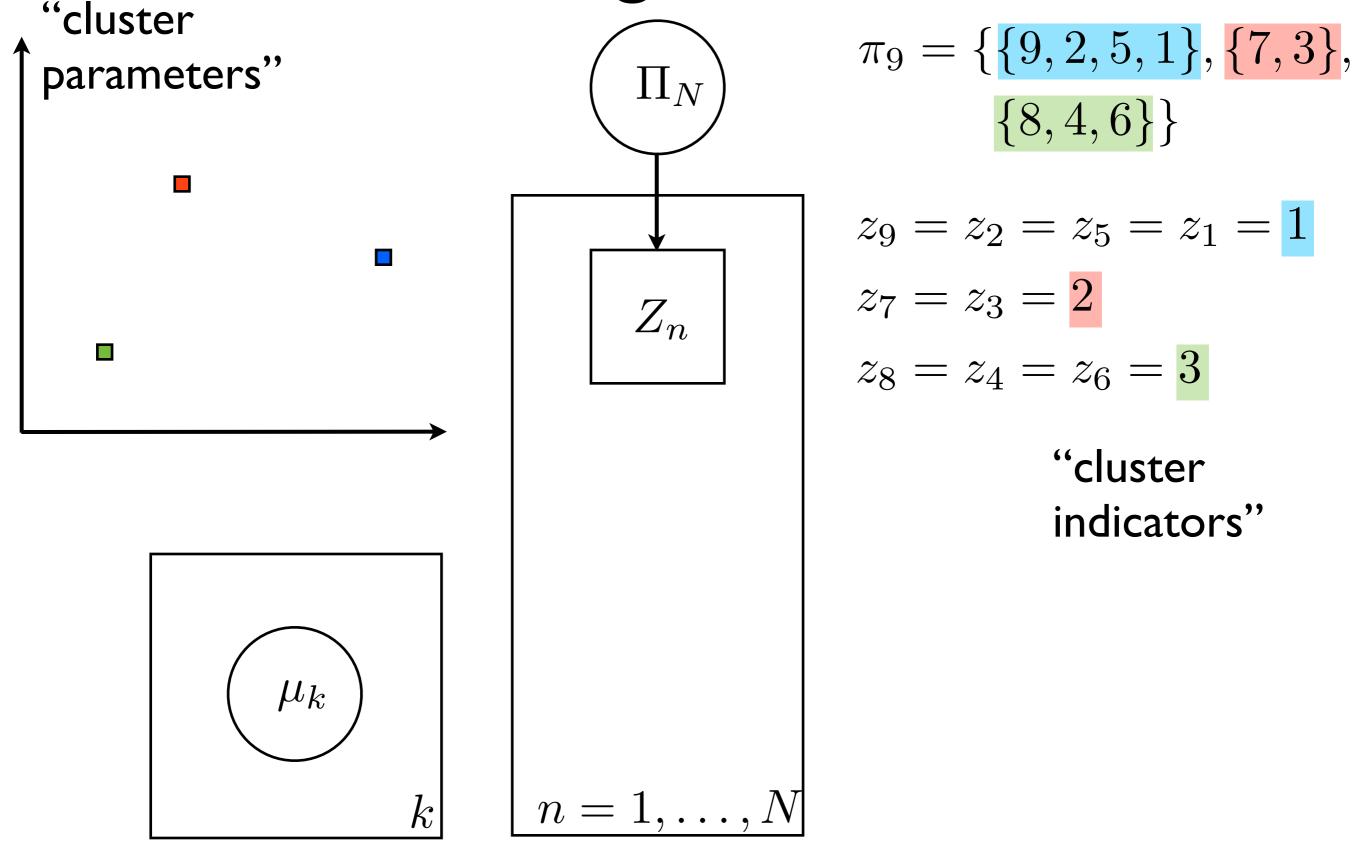


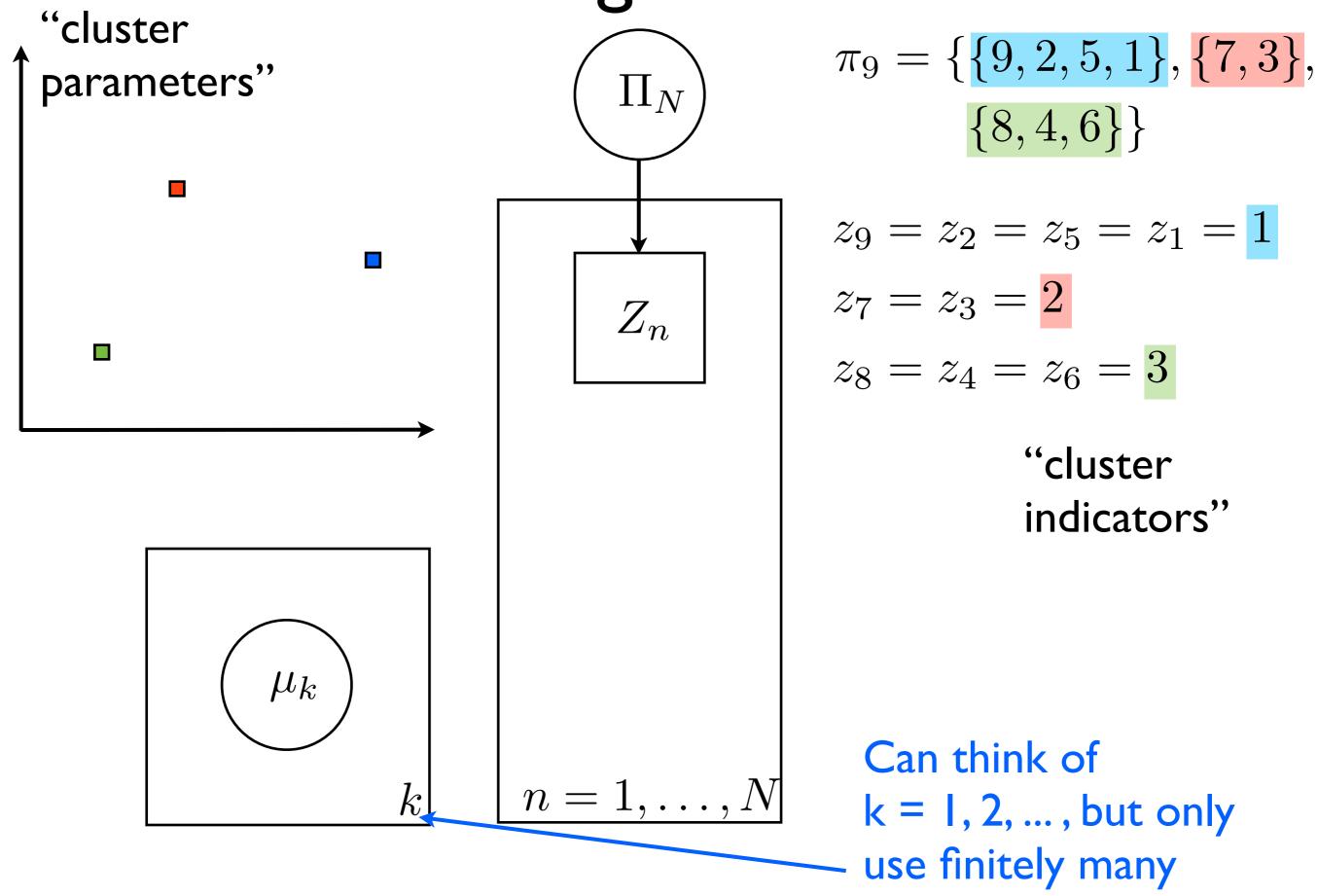


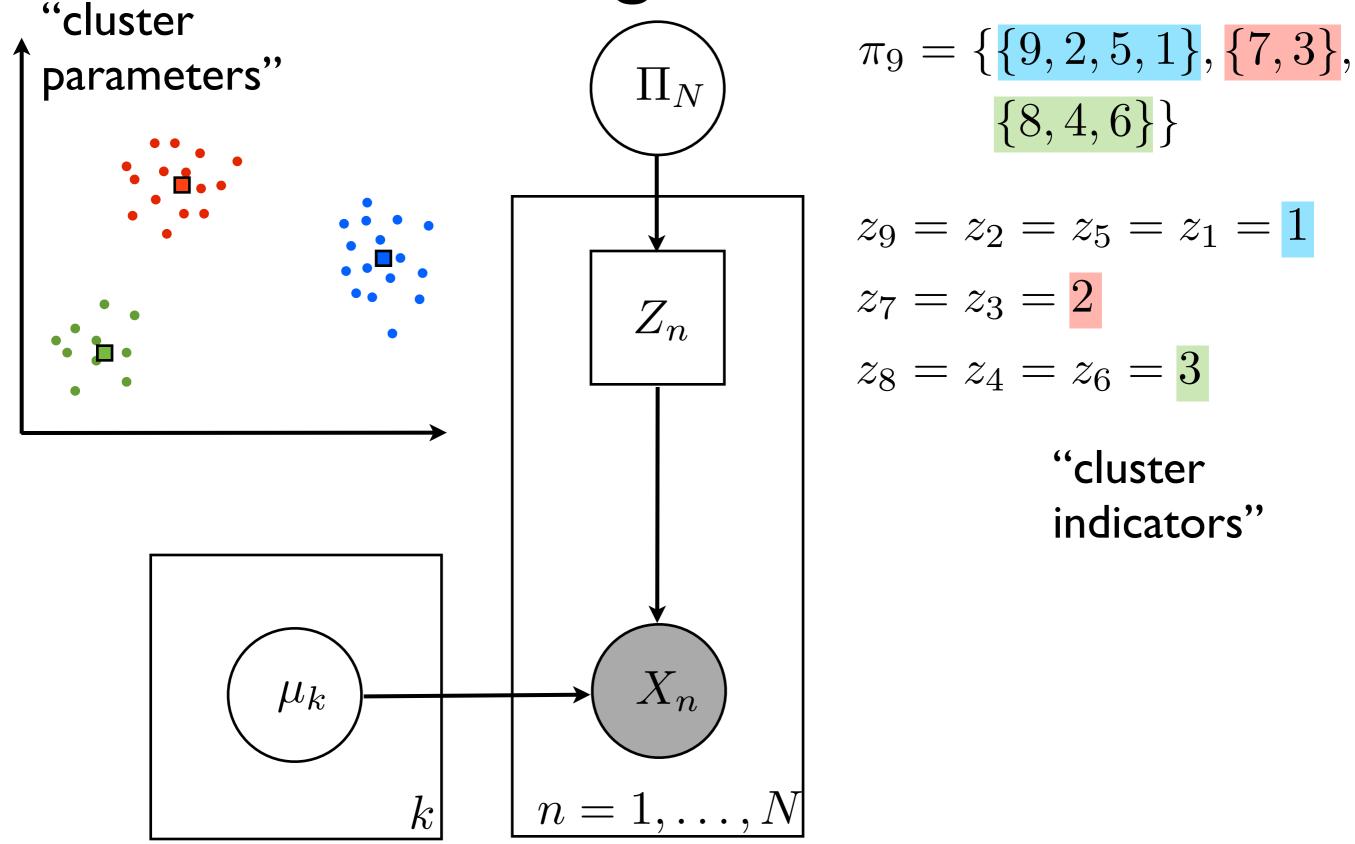


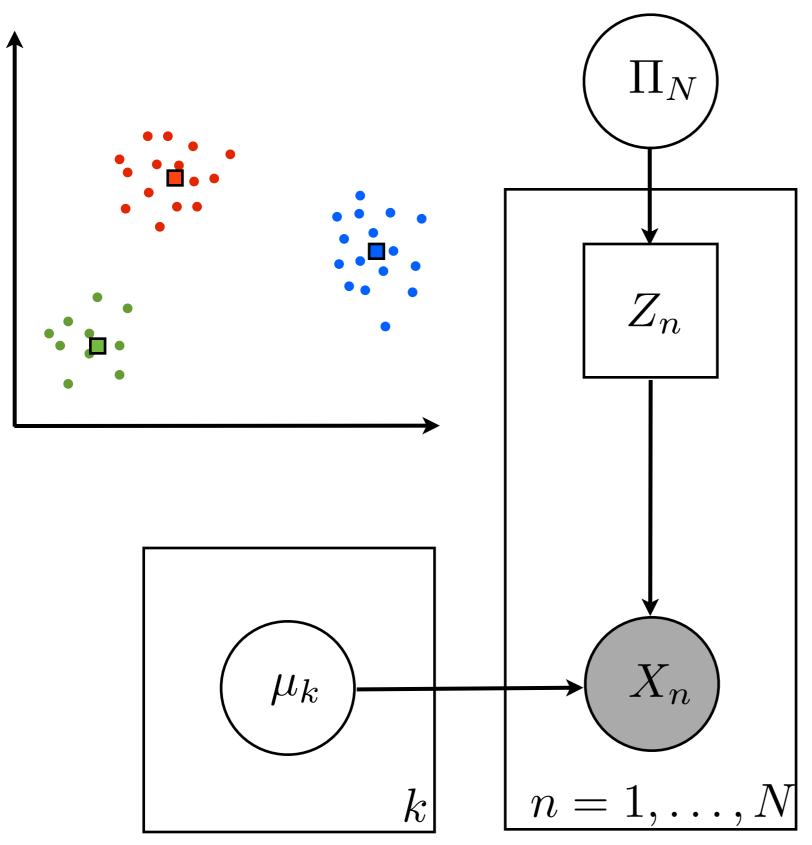


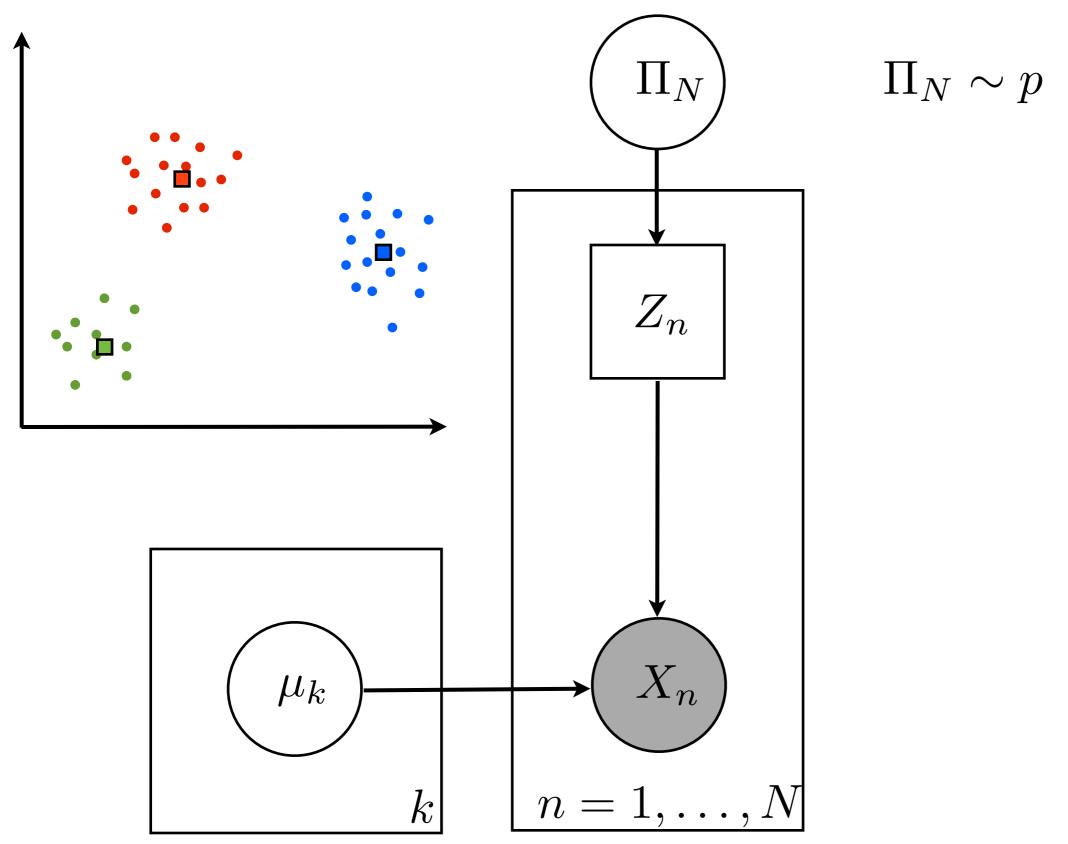


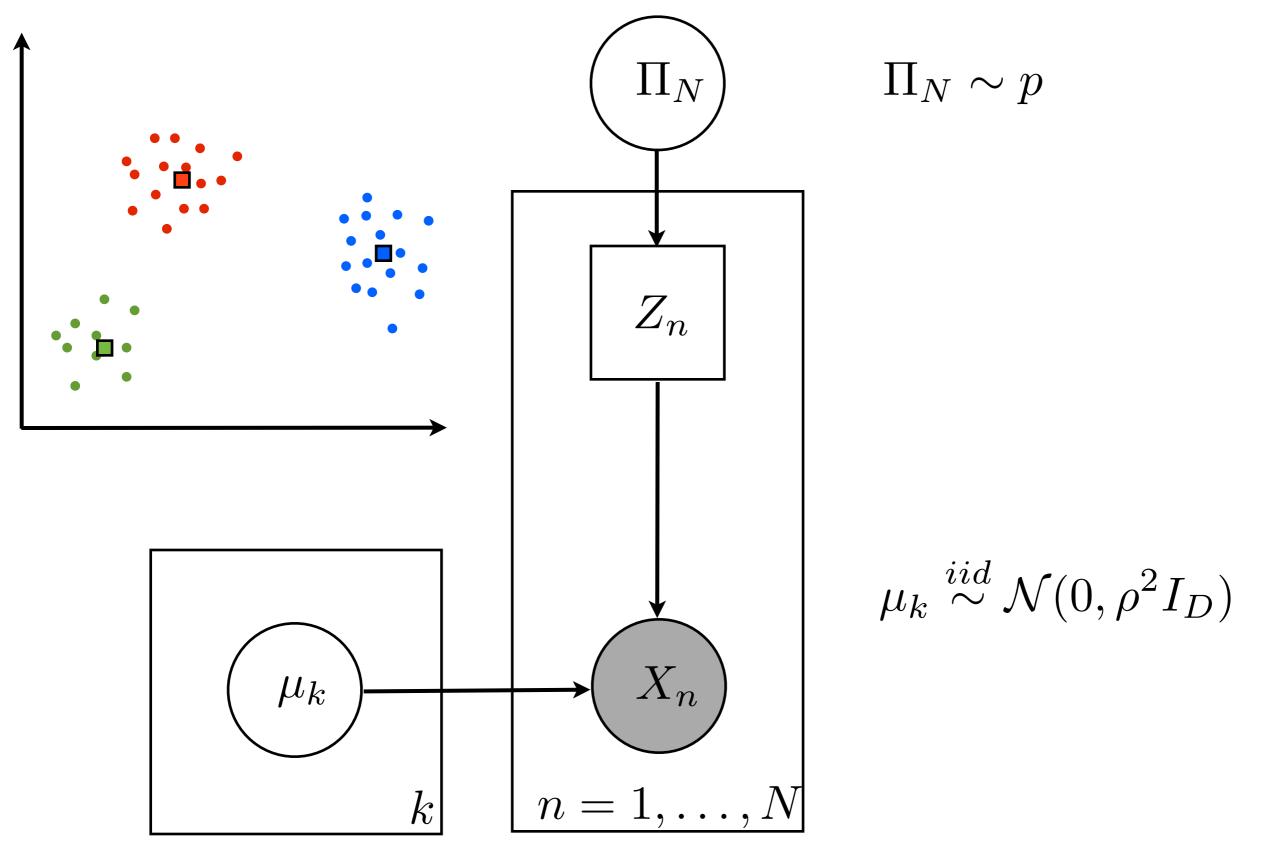


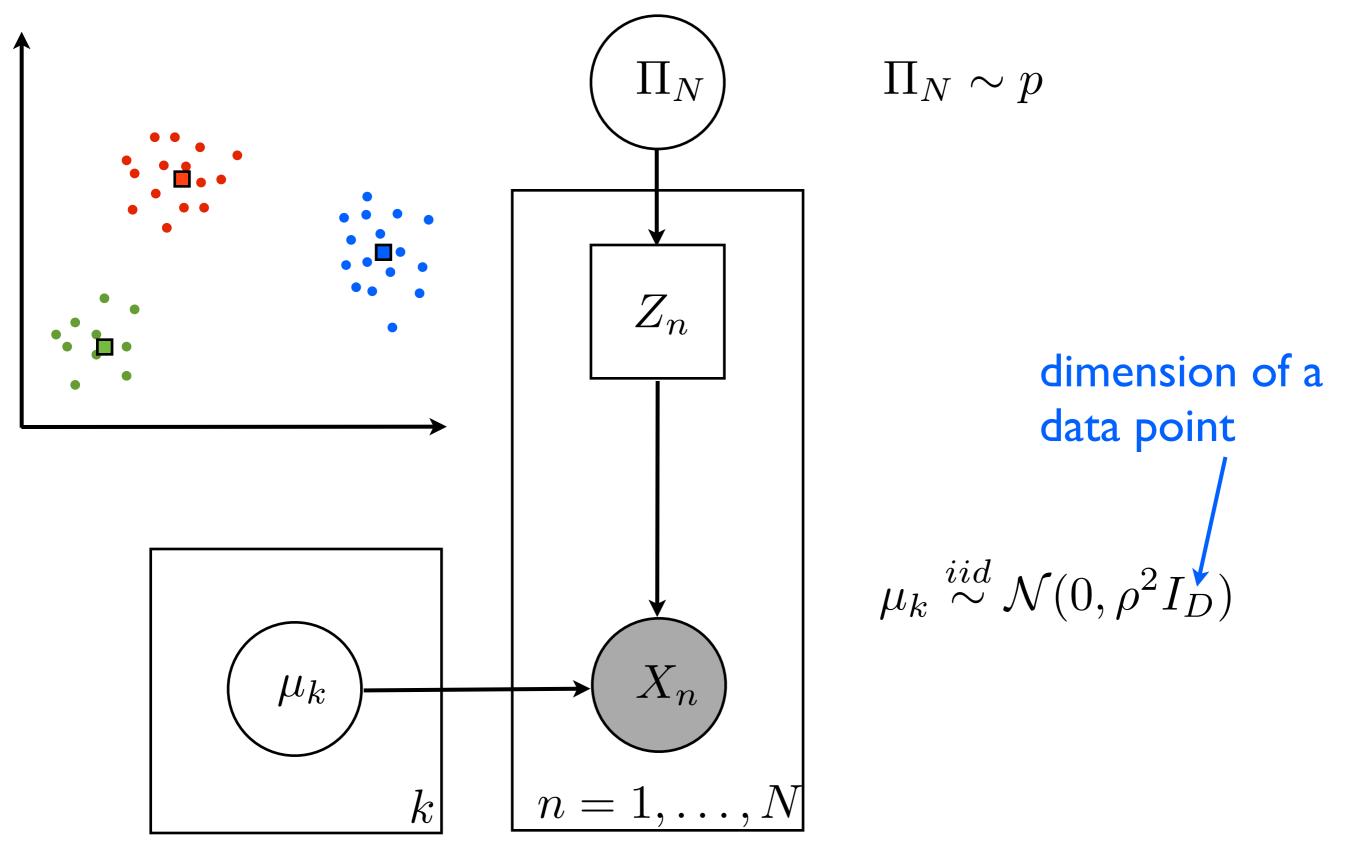


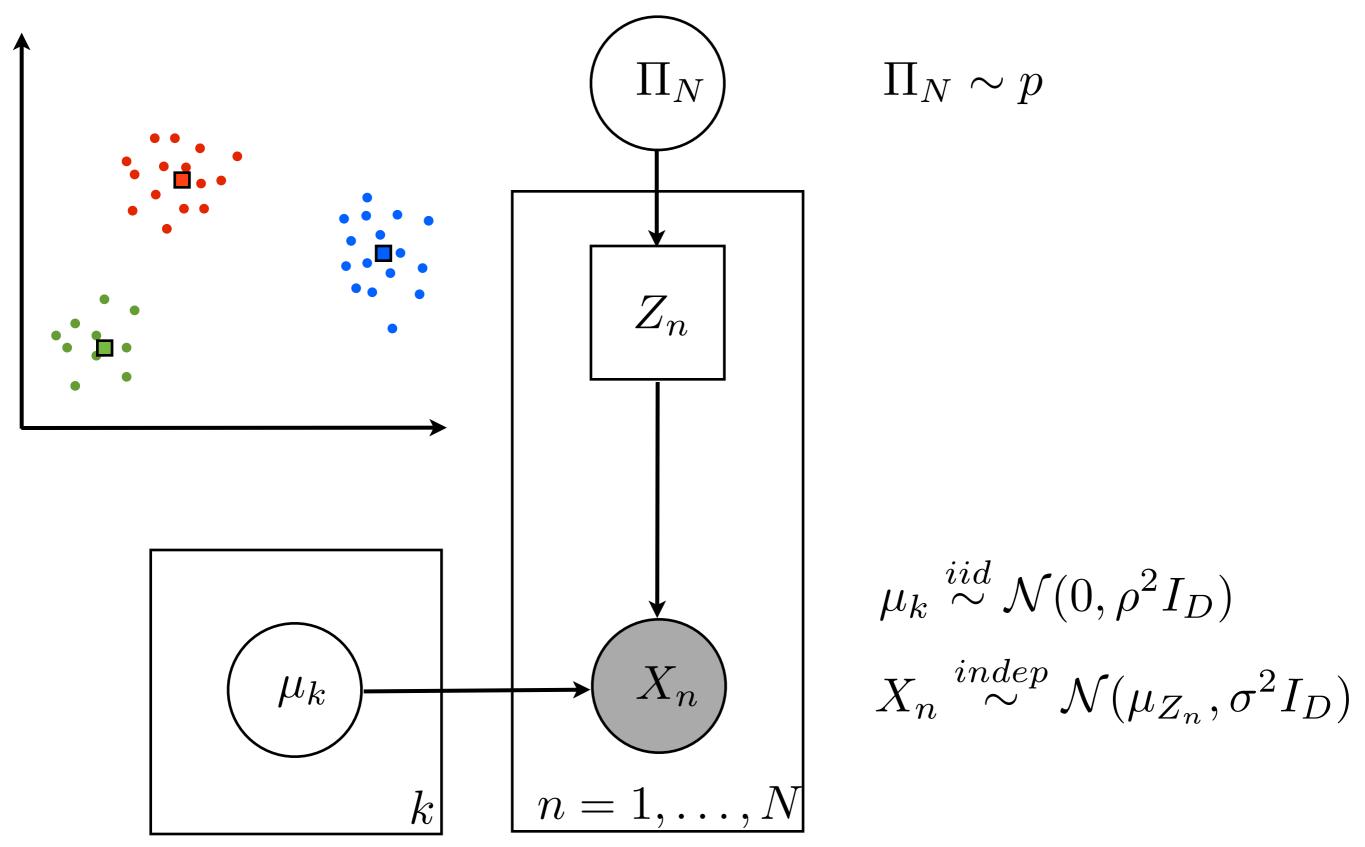


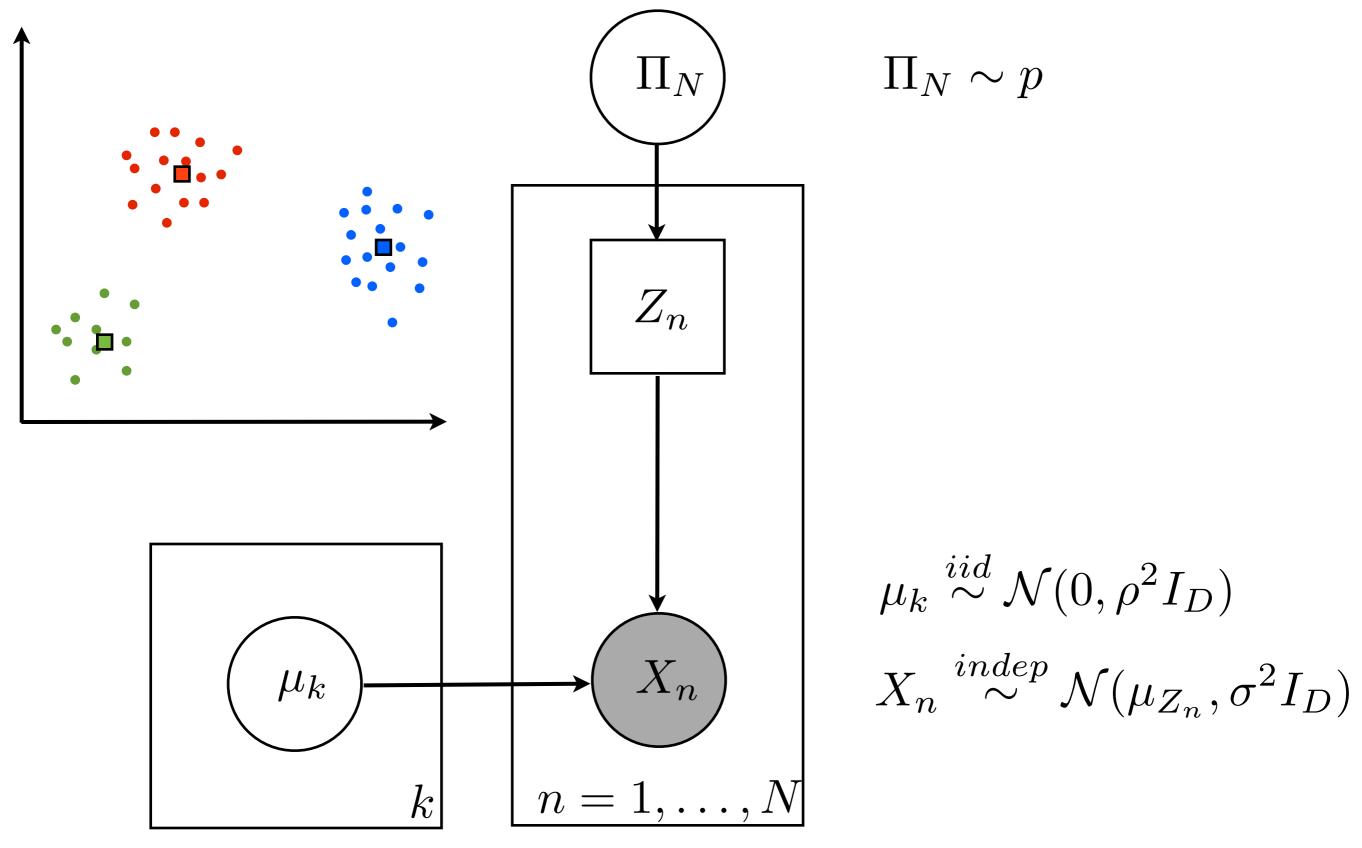




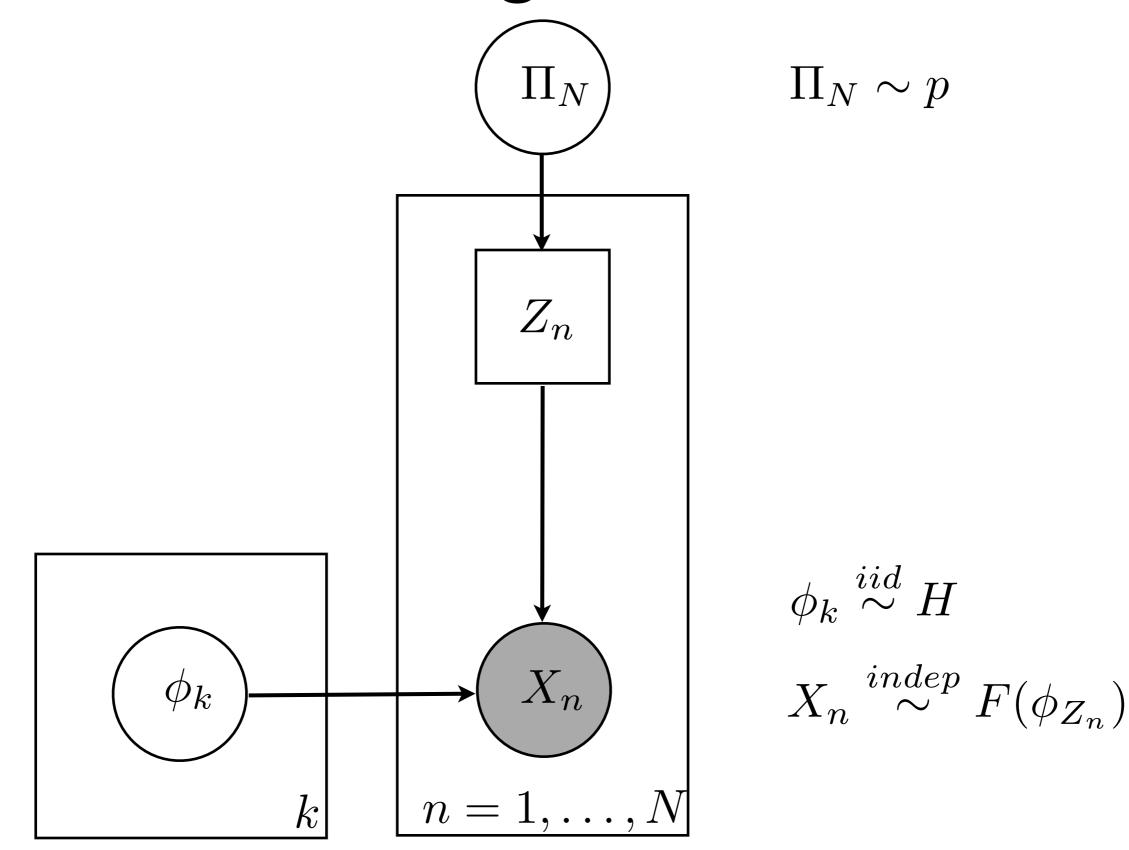








"Gaussian mixture model"



I. Clusters

Overview

Distribution

- Clusters (Example: Chinese restaurant process)
- Data given clusters (Example: Gaussian mixture)
- ♦ Posterior
- Proportions
- Random probability measure

I. Clusters

Overview

Distribution

- Clusters (Example: Chinese restaurant process)
- Oata given clusters (Example: Gaussian mixture)

♦ Posterior

- Proportions
- Random probability measure

EPPF: Calculating posterior

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

Calculating posterior: $\mathbb{P}(Z, \mu|X)$

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

all data points (N vectors of length D)

Calculating posterior: $\mathbb{P}(Z, \mu|X)$

all cluster indicators (N integers)

all data points (N vectors of length D)

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

all cluster indicators (N integers)

all data points (N vectors of length D)

all cluster means (K vectors of length D)

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

• Usually can't do exact calculation

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can't do exact calculation
- Approximation (MCMC, variational methods)

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can't do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

[Geman, Geman 1984]

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can't do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling Type of MCMC method

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can't do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can't do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

$$\mathbb{P}(Z_n | X, \mu, Z_{-n}), \quad n = 1, \dots, N$$
$$\mathbb{P}(\mu_k | X, Z, \mu_{-k}), \quad k = 1, \dots, K$$

Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can't do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

• Sample each variable conditioned on the rest

 $\mathbb{P}(Z_n | X, \mu, Z_{-n}), \quad n = 1, \dots, N$ $\mathbb{P}(\mu_k | X, Z, \mu_{-k}), \quad k = 1, \dots, K$ function of Z

Gibbs sampling

• Sample each variable conditioned on the rest

 $\mathbb{P}(Z_n|X,\mu,Z_{-n})$

Gibbs sampling

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$

Gibbs sampling

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$
$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$

Gibbs sampling

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$
 use exchangeability
$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$

Gibbs sampling

• Sample each variable conditioned on the rest

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$
$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$

e.g. Chinese restaurant process for clusters; Gaussian mixture for data given clusters

Gibbs sampling

• Sample each variable conditioned on the rest

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$
$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$

e.g. CRP for clusters; Gaussian mixture for data given clusters

Gibbs sampling

• Sample each variable conditioned on the rest

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$

$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$
e.g. CRP for clusters;
Gaussian mixture for =
$$\begin{cases} \mathcal{N}(X_n|\mu_k,\sigma^2 I_D)\frac{|A_{-n,k}|}{N-1+\theta} & Z_n = k\\ \mathcal{N}(X_n|0,(\rho^2 + \sigma^2)I_D)\frac{\theta}{N-1+\theta} & Z_n \text{ new} \end{cases}$$

[Escobar 1994; West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]

Gibbs sampling

е.

• Sample each variable conditioned on the rest

$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$

$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$
e.g. CRP for clusters;
Gaussian mixture for $= \begin{cases} \mathcal{N}(X_n|\mu_k,\sigma^2 I_D)\frac{|A_{-n,k}|}{N(X_n|0,(\rho^2+\sigma^2)}I_D)\frac{\theta}{N-1+\theta} & Z_n = k\\ \mathcal{N}(X_n|0,(\rho^2+\sigma^2)}I_D)\frac{\theta}{N-1+\theta} & Z_n \text{ new} \end{cases}$

[Escobar 1994; West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]

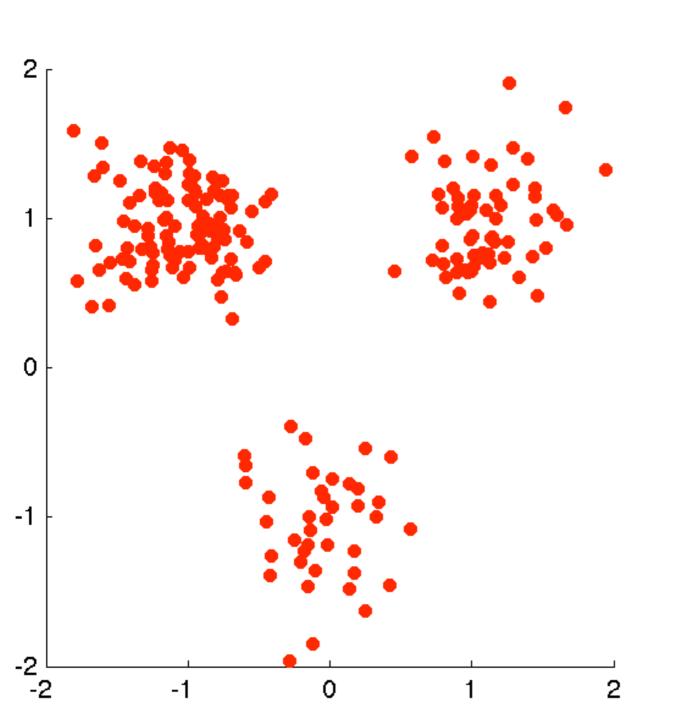
Gibbs sampling

• Sample each variable conditioned on the rest

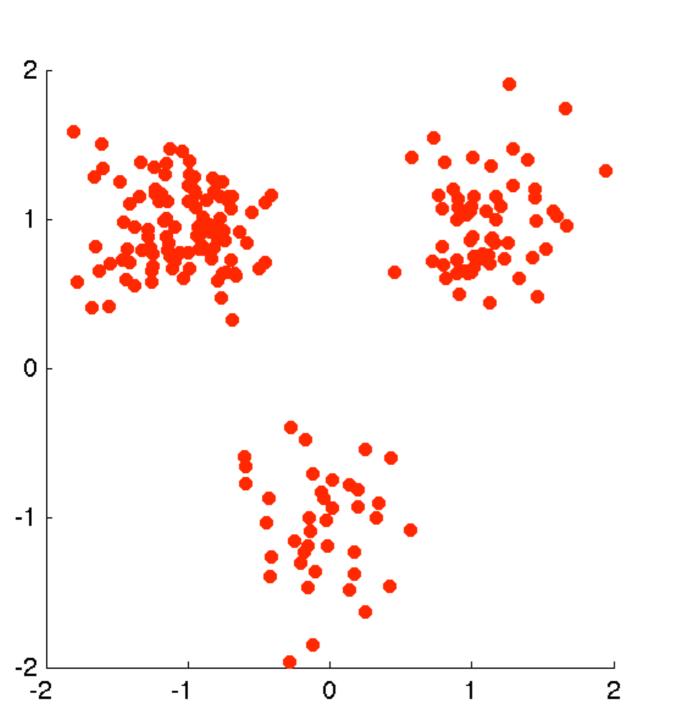
$$\mathbb{P}(Z_n|X,\mu,Z_{-n}) = \frac{\mathbb{P}(X,Z,\mu)}{\mathbb{P}(X,Z_{-n},\mu)}$$

$$\propto \frac{\mathbb{P}(\Pi_N)\mathbb{P}(X_n|Z_n,\mu)}{\mathbb{P}(\Pi_{N-1})}$$
e.g. CRP for clusters;
Gaussian mixture for =
$$\begin{cases} \mathcal{N}(X_n|\mu_k,\sigma^2 I_D)\frac{|A_{-n,k}|}{N-1+\theta} & Z_n = k\\ \mathcal{N}(X_n|0,(\rho^2+\sigma^2)I_D)\frac{\theta}{N-1+\theta} & Z_n \text{ new} \end{cases}$$

[Escobar 1994; West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]



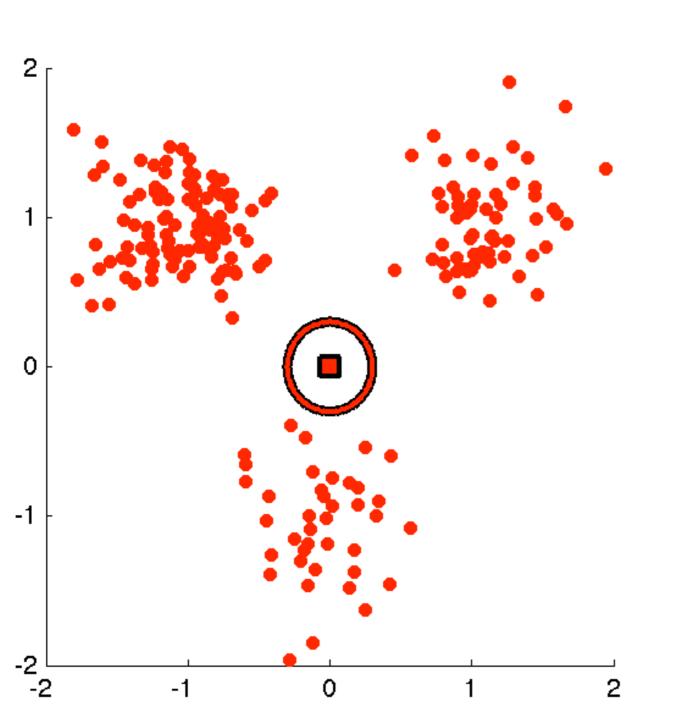
- Initialize
- Repeat
 - Sample cluster indicators



Initialize

• Repeat

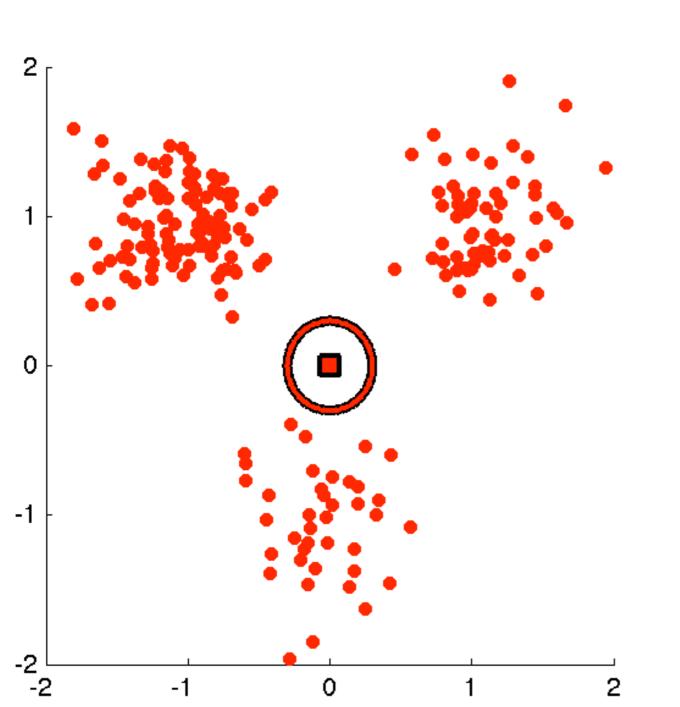
Sample cluster indicators



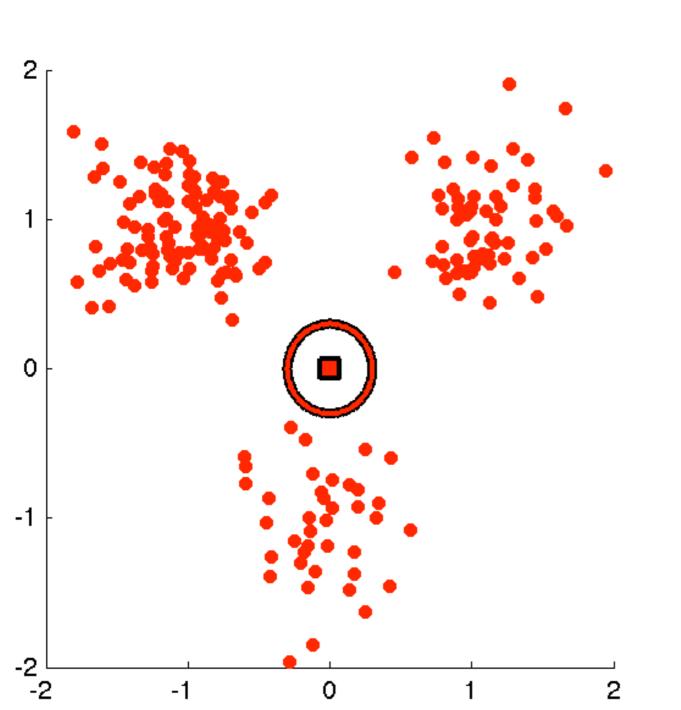
Assign all points to one cluster

• Repeat

Sample cluster indicators

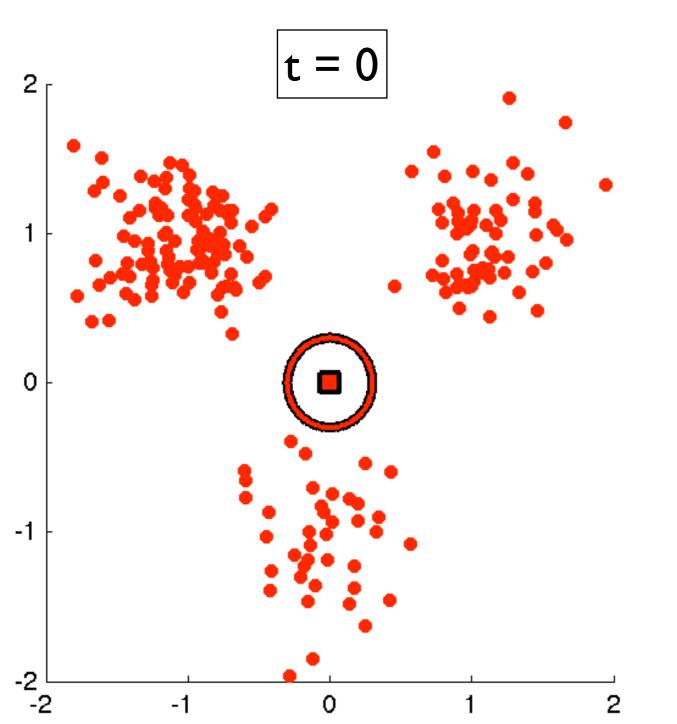


- Assign all points to one cluster
- Repeat
 - Sample cluster indicators

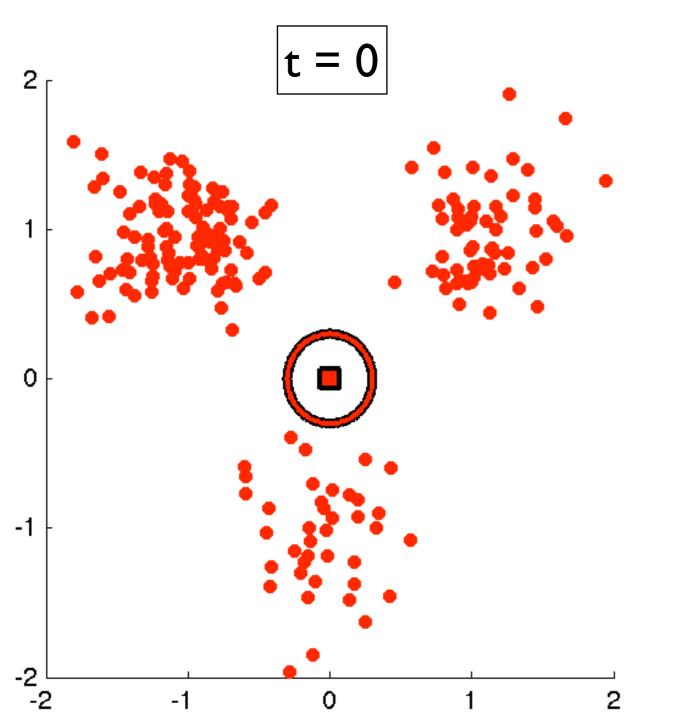


- Assign all points to one cluster
- For t = I, ..., T

Sample cluster indicators

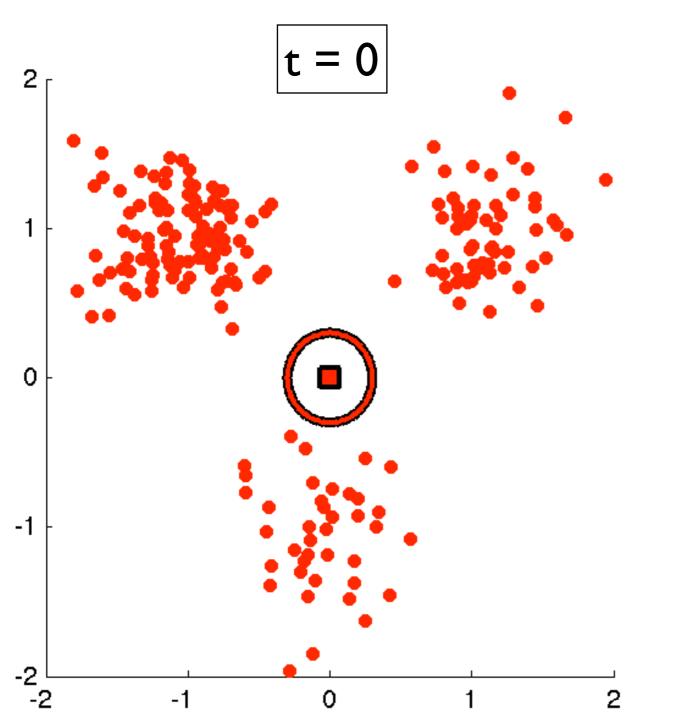


- Assign all points to one cluster
- For t = 1, ..., T
 - Sample cluster indicators



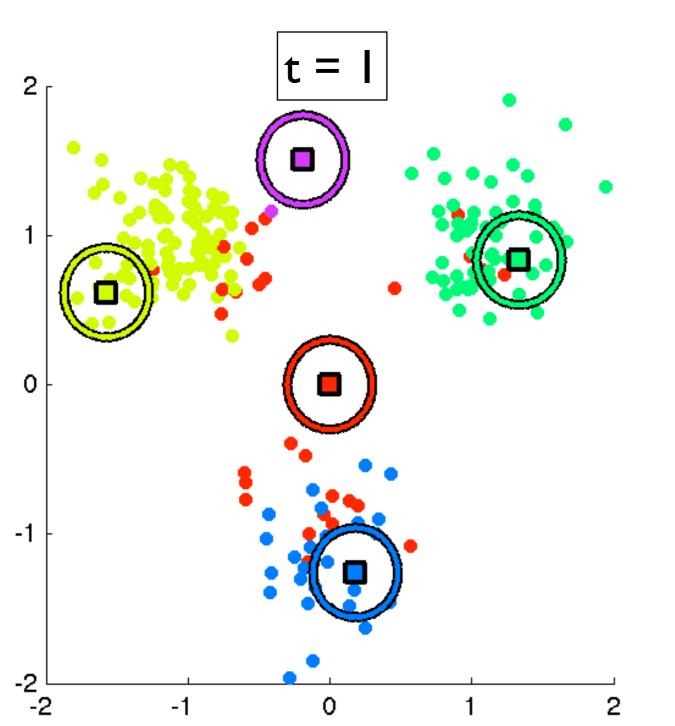
Assign all points to one cluster
For t = I, ..., T

Sample cluster indicators



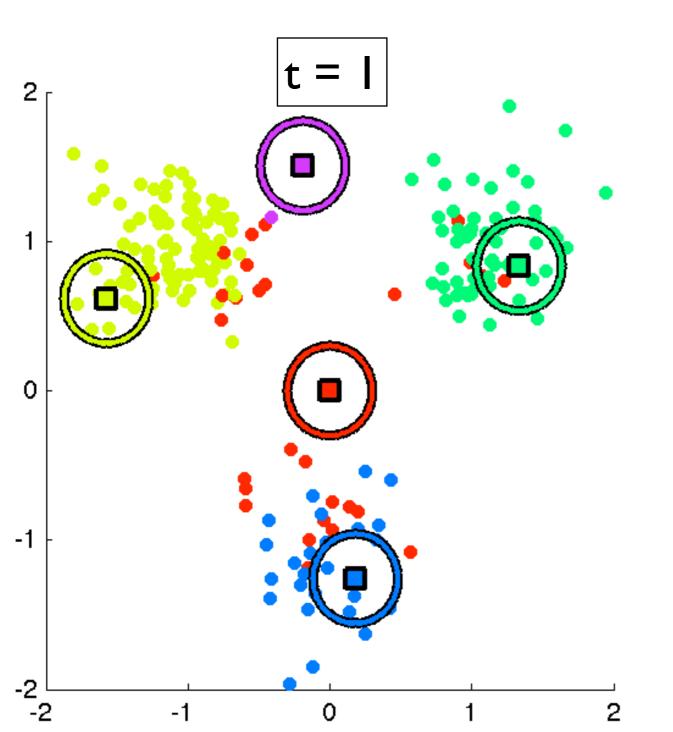
Assign all points to one cluster
For t = I, ..., T

♦ For n = I, ..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$ ♦ Sample cluster parameters



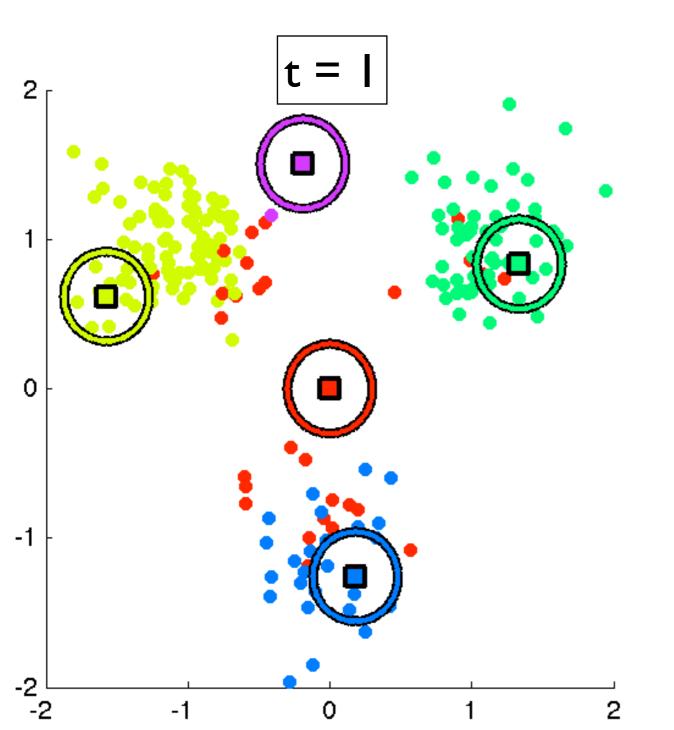
Assign all points to one cluster
For t = 1, ..., T

♦ For n = I, ..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$ ♦ Sample cluster parameters

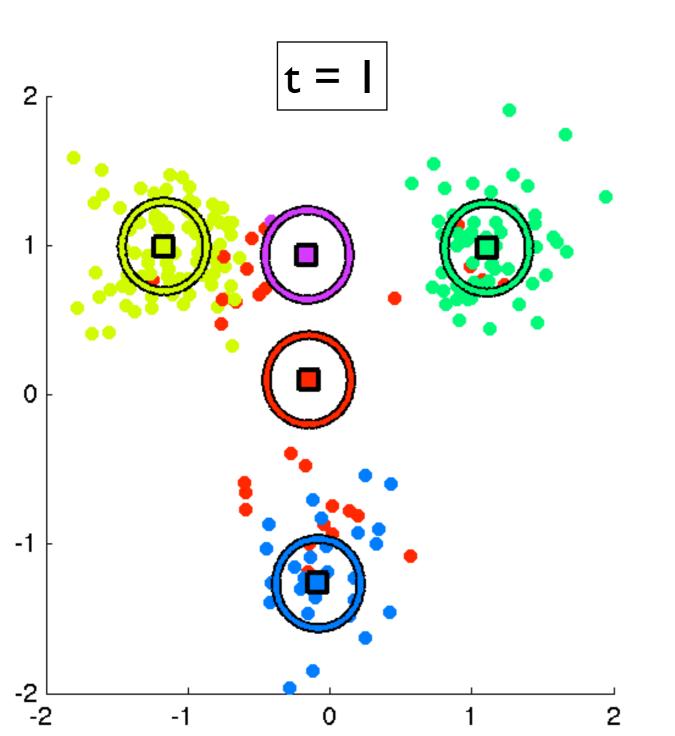


Assign all points to one cluster
For t = 1, ..., T

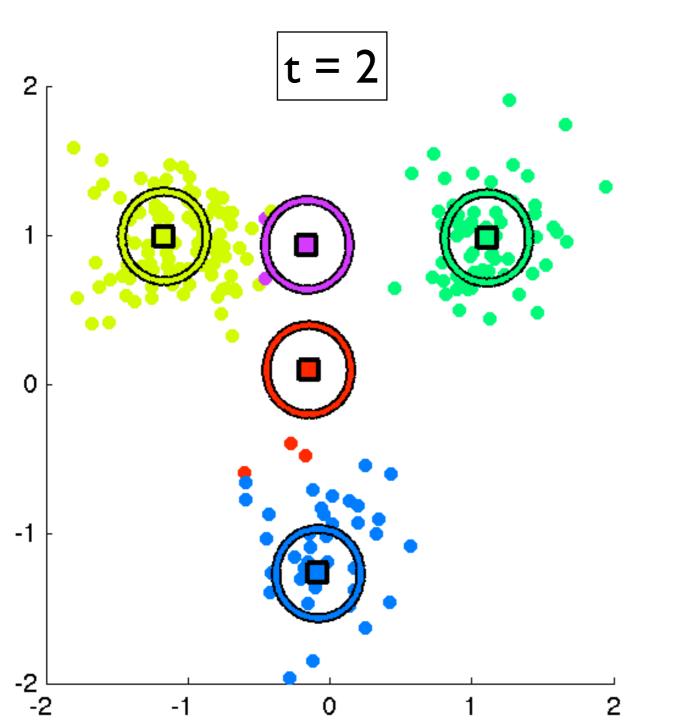
♦ For n = I,..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$



Assign all points to one cluster
For t = I,...,T
♦ For n = I,...,N
Z_n ~ P(Z_n|X, μ, Z_{-n})
♦ For k = I,...,K
μ_k ~ P(μ_k|X, Z, μ_{-k})

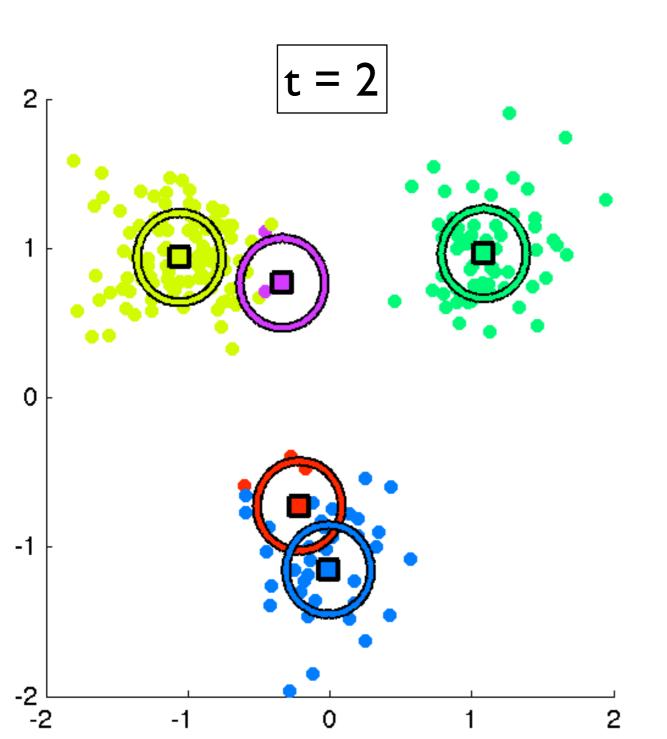


Assign all points to one cluster
For t = 1,...,T
♦ For n = 1,...,N
Z_n ~ P(Z_n|X, μ, Z_{-n})
♦ For k = 1,...,K
μ_k ~ P(μ_k|X, Z, μ_{-k})

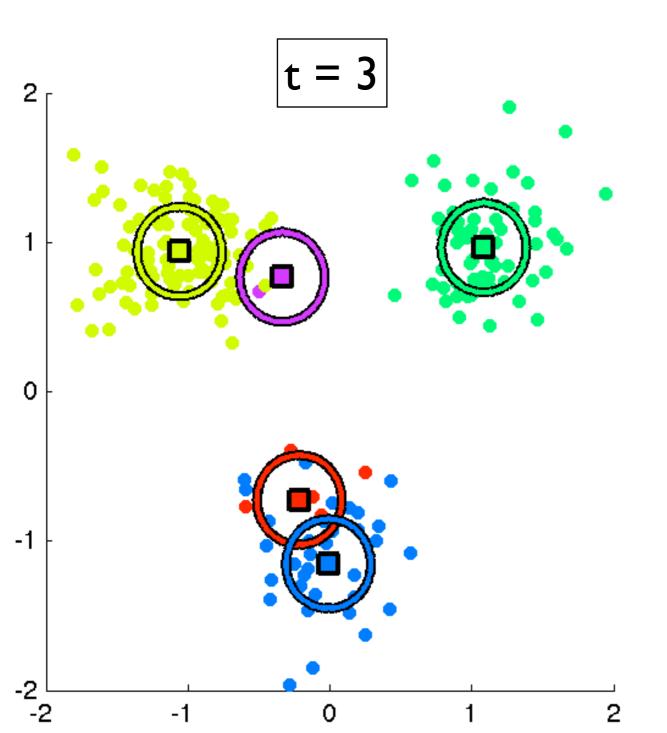


Assign all points to one cluster
For t = 1, ..., T

♦ For n = I,..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$ ♦ For k = I,..., K $\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k})$

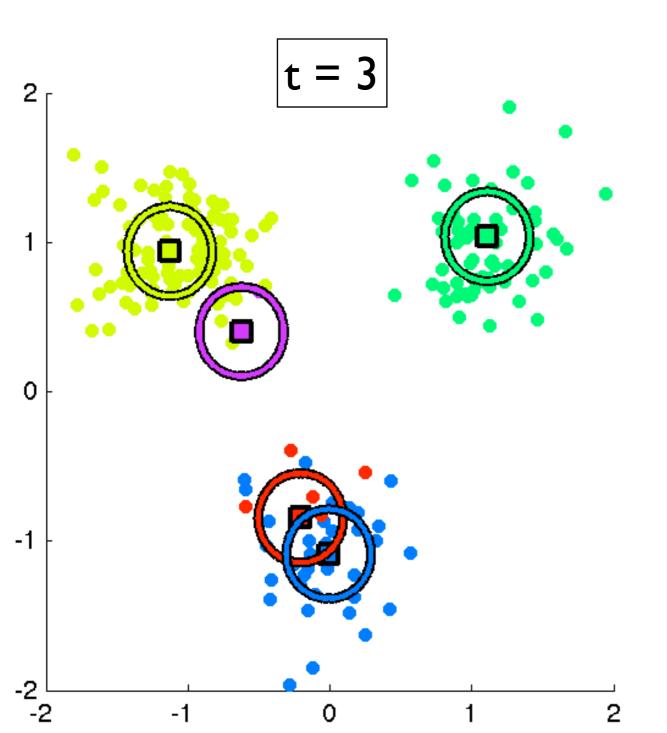


Assign all points to one cluster
For t = 1, ..., T
♦ For n = 1, ..., N
Z_n ~ P(Z_n | X, µ, Z_{-n})
♦ For k = 1, ..., K
µ_k ~ P(µ_k | X, Z, µ_{-k})

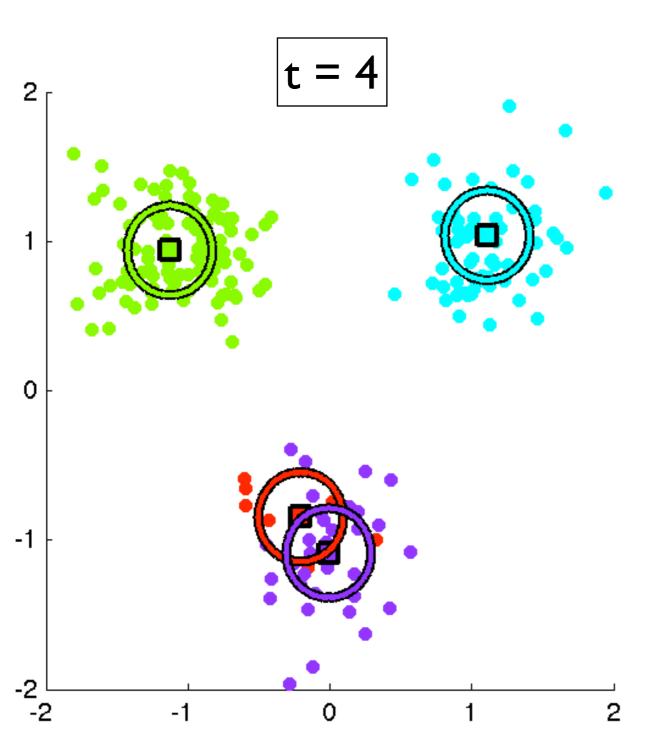


Assign all points to one cluster
For t = 1, ..., T

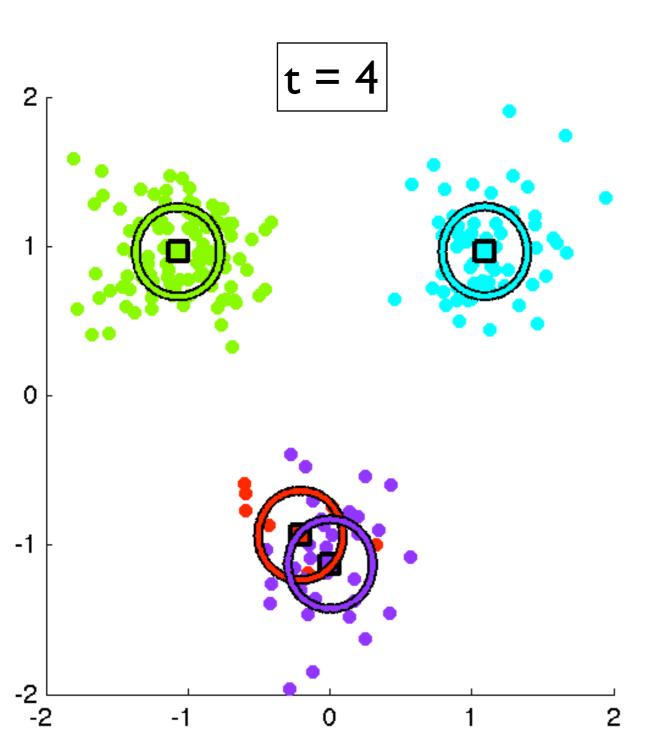
♦ For n = I,..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$ ♦ For k = I,..., K $\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k})$



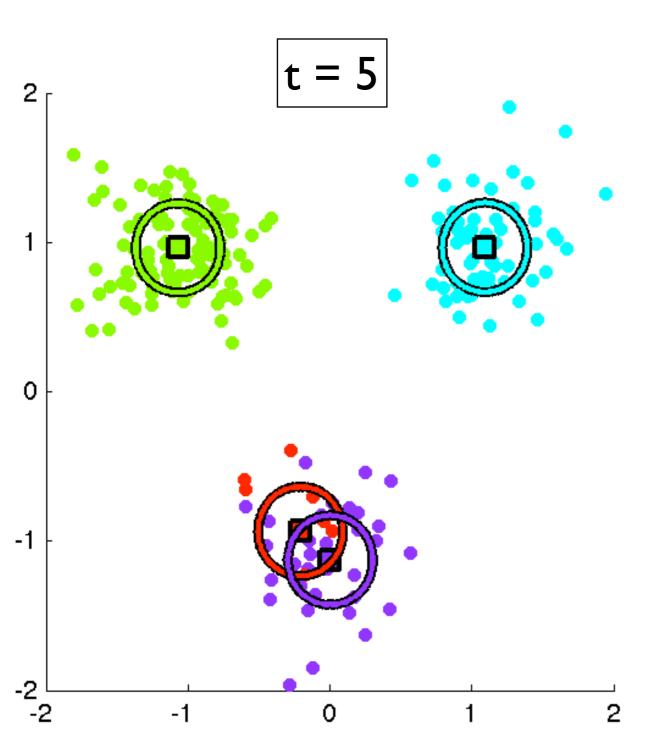
Assign all points to one cluster
For t = 1,...,T
For n = 1,...,N
Z_n ~ P(Z_n|X, μ, Z_{-n})
For k = 1,...,K
μ_k ~ P(μ_k|X, Z, μ_{-k})



Assign all points to one cluster
For t = 1, ..., T

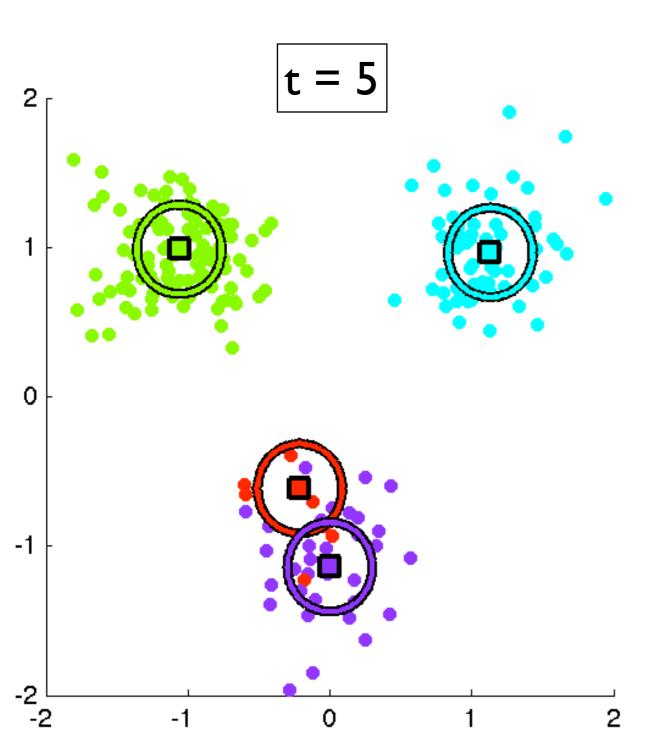


Assign all points to one cluster
For t = 1, ..., T
♦ For n = 1, ..., N
Z_n ~ P(Z_n | X, µ, Z_{-n})
♦ For k = 1, ..., K
µ_k ~ P(µ_k | X, Z, µ_{-k})

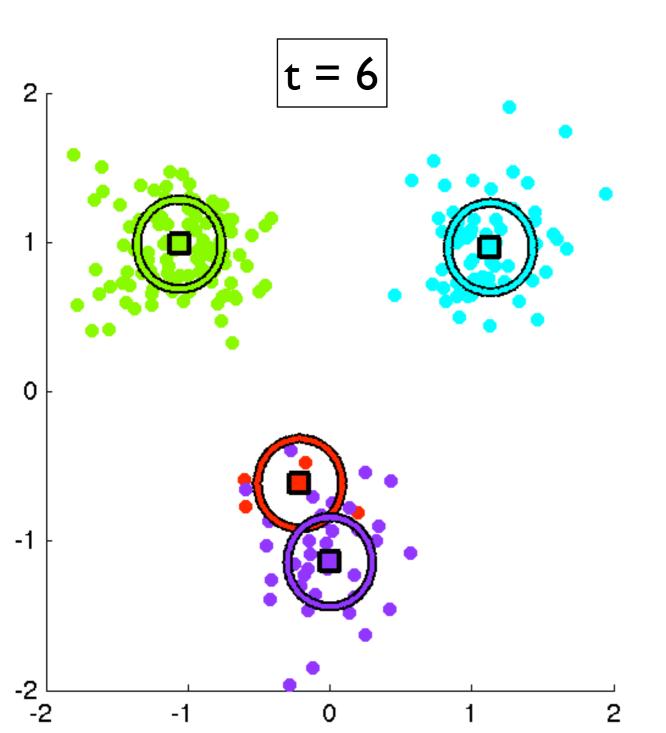


Assign all points to one cluster
For t = 1, ..., T

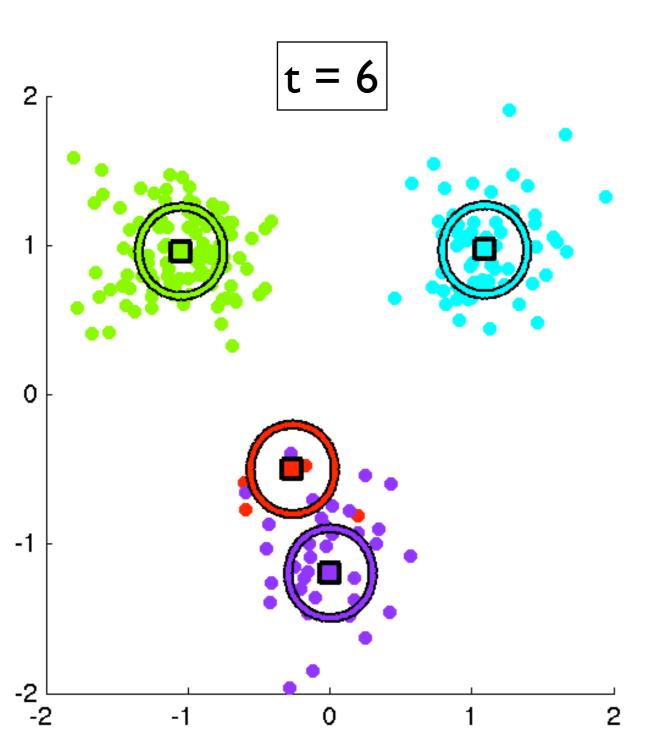
 $\begin{aligned} & \clubsuit \text{ For n = I, ..., N} \\ & Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \\ & & & & & & \\ & & & & \\ & \mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k}) \end{aligned}$



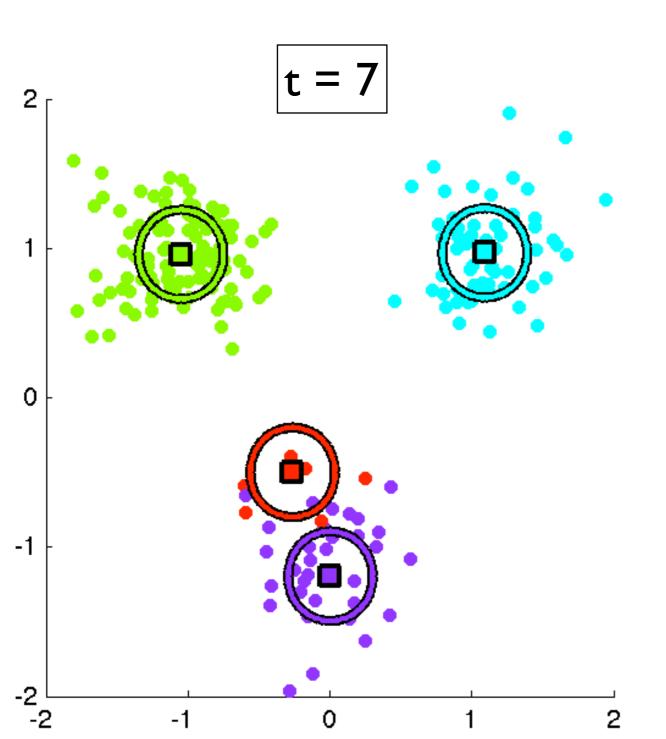
Assign all points to one cluster
For t = 1, ..., T
♦ For n = 1, ..., N
Z_n ~ P(Z_n | X, µ, Z_{-n})
♦ For k = 1, ..., K
µ_k ~ P(µ_k | X, Z, µ_{-k})



Assign all points to one cluster
For t = 1, ..., T

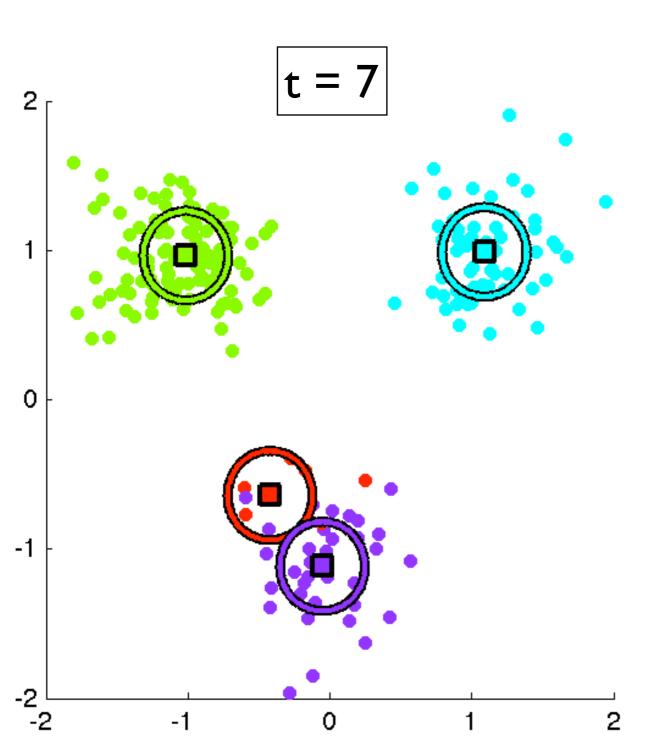


Assign all points to one cluster
For t = 1,...,T
♦ For n = 1,...,N
Z_n ~ P(Z_n|X, μ, Z_{-n})
♦ For k = 1,...,K
μ_k ~ P(μ_k|X, Z, μ_{-k})

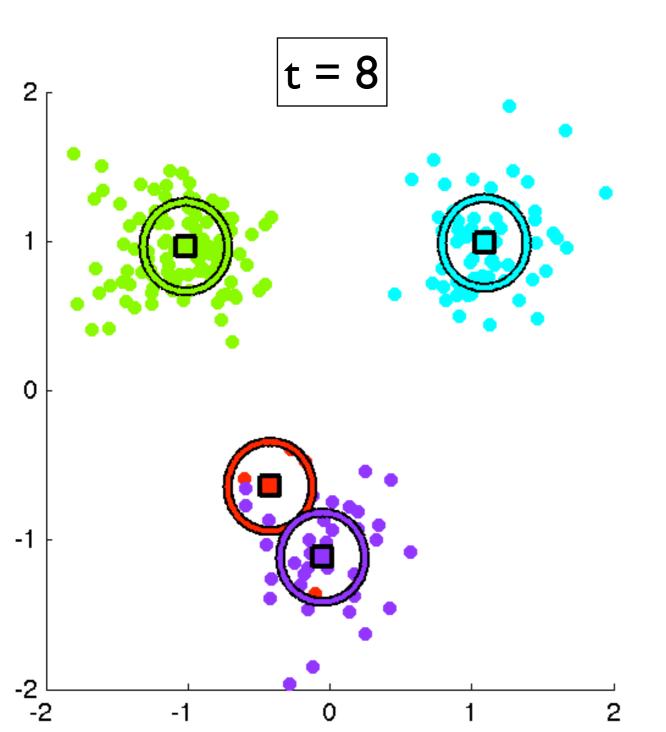


Assign all points to one cluster
For t = 1, ..., T

 $\begin{aligned} & \clubsuit \text{ For n = I, ..., N} \\ & Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \\ & & & \clubsuit \text{ For k = I, ..., K} \\ & \mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k}) \end{aligned}$

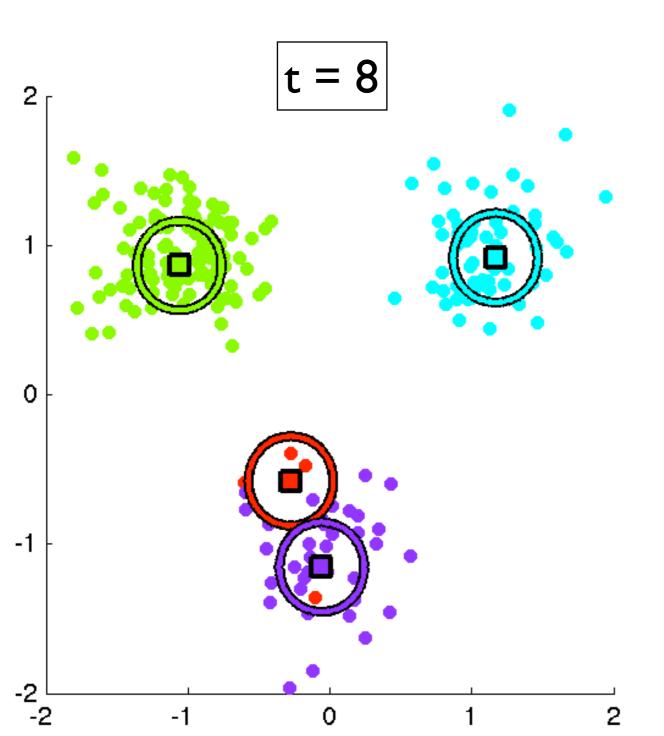


Assign all points to one cluster
For t = 1, ..., T
♦ For n = 1, ..., N
Z_n ~ P(Z_n | X, µ, Z_{-n})
♦ For k = 1, ..., K
µ_k ~ P(µ_k | X, Z, µ_{-k})

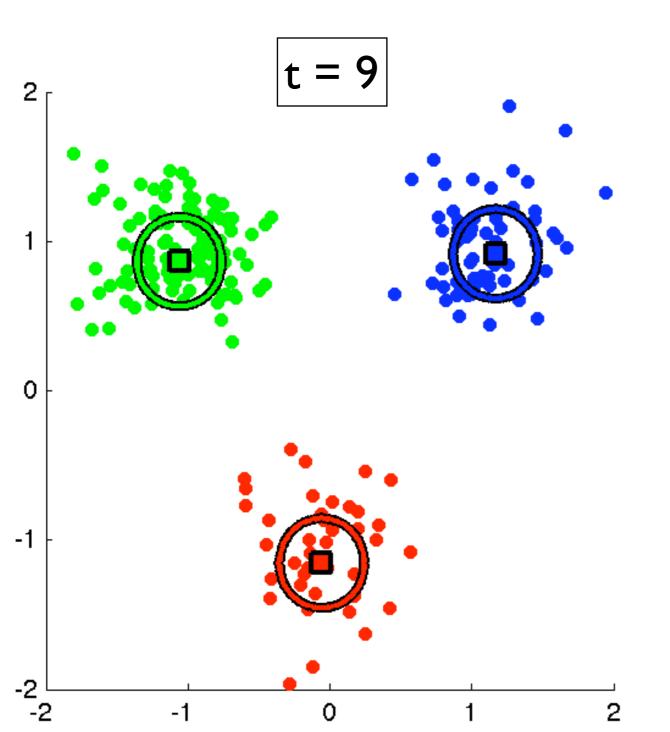


Assign all points to one cluster
For t = 1, ..., T

♦ For n = I,..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$ ♦ For k = I,..., K $\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k})$

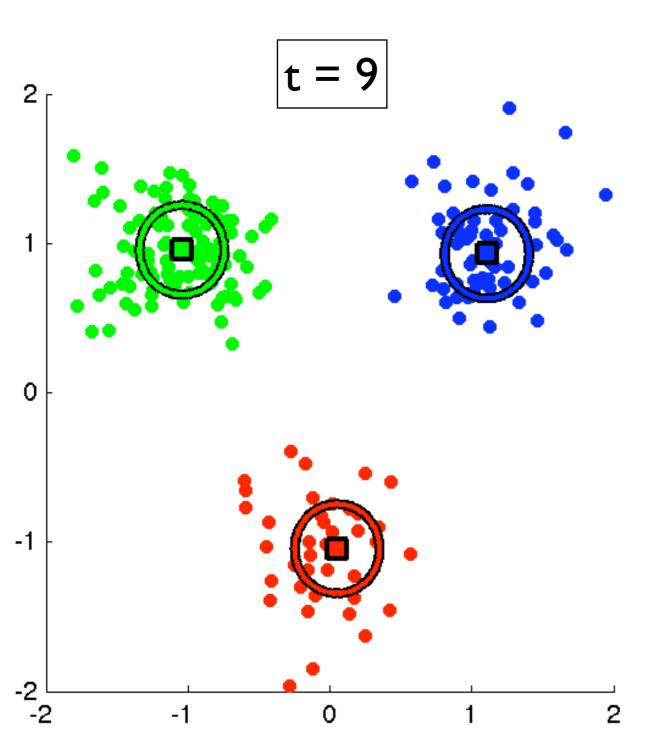


Assign all points to one cluster
For t = 1, ..., T
♦ For n = 1, ..., N
Z_n ~ P(Z_n | X, µ, Z_{-n})
♦ For k = 1, ..., K
µ_k ~ P(µ_k | X, Z, µ_{-k})



Assign all points to one cluster
For t = 1, ..., T

♦ For n = I,..., N $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$ ♦ For k = I,..., K $\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k})$



Assign all points to one cluster
For t = 1, ..., T
♦ For n = 1, ..., N
Z_n ~ P(Z_n | X, µ, Z_{-n})
♦ For k = 1, ..., K
µ_k ~ P(µ_k | X, Z, µ_{-k})

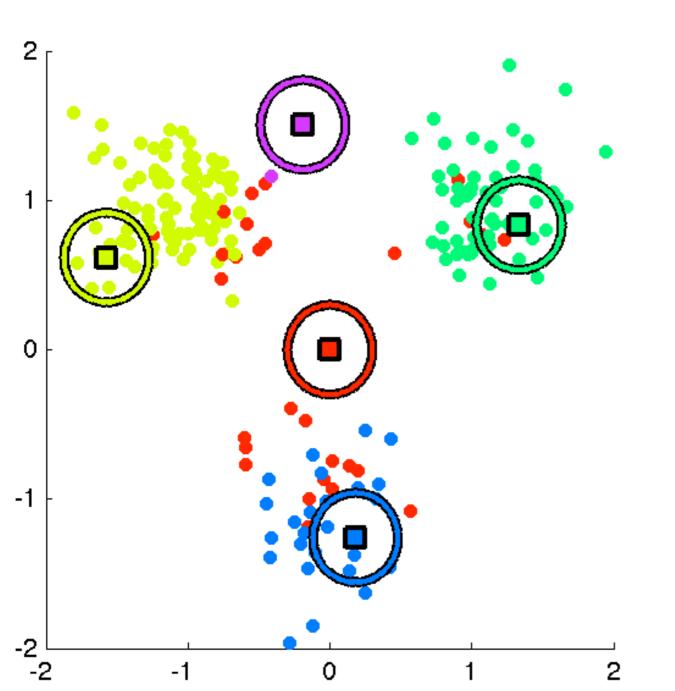
Gibbs sampling: potential issues

Gibbs sampling: potential issues

• Bad mixing from dependence on cluster parameter

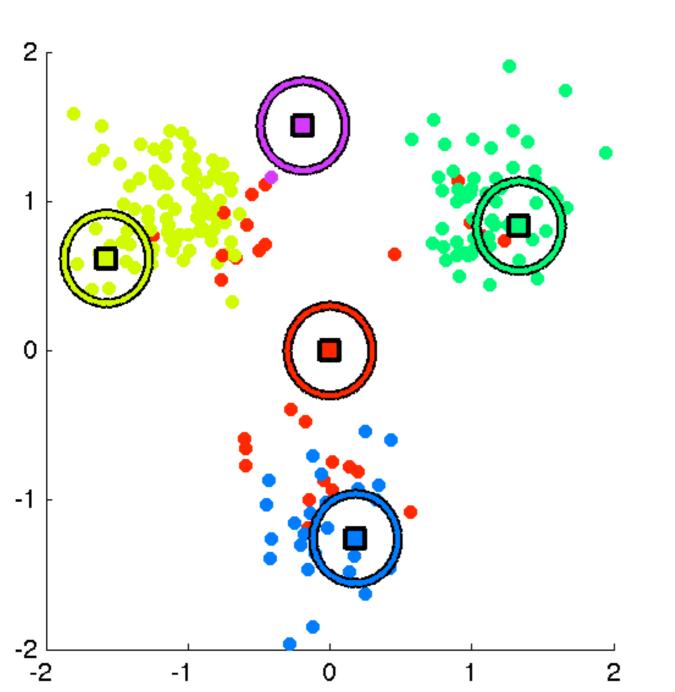
Gibbs sampling: potential issues

• Bad mixing from dependence on cluster parameter



Gibbs sampling: potential issues

• Bad mixing from dependence on cluster parameter

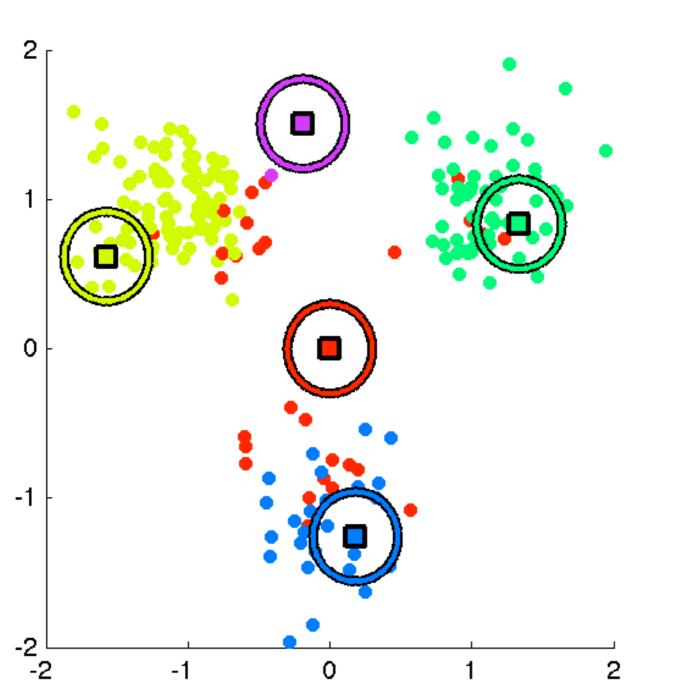


Instead try: collapsed sampler

[Neal 1992; MacEachern 1994; Neal 2000]

Gibbs sampling: potential issues

• Bad mixing from dependence on cluster parameter



Instead try: collapsed sampler

- Instead of $\mathbb{P}(Z,\mu|X)$ learn $\mathbb{P}(Z|X)$

[Neal 1992; MacEachern 1994; Neal 2000]

Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest

Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest

 $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$

 $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$

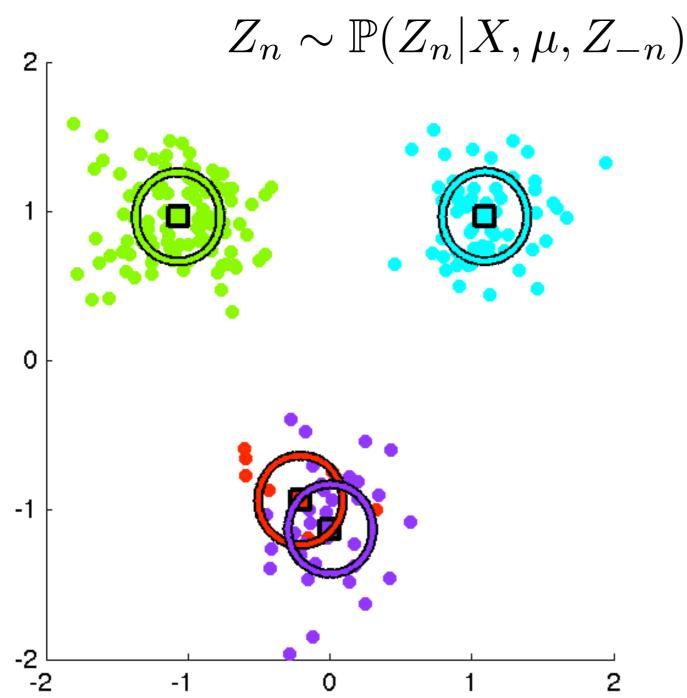
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest

2 0 2 -1 O

Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest



Instead try: split-merge sampler

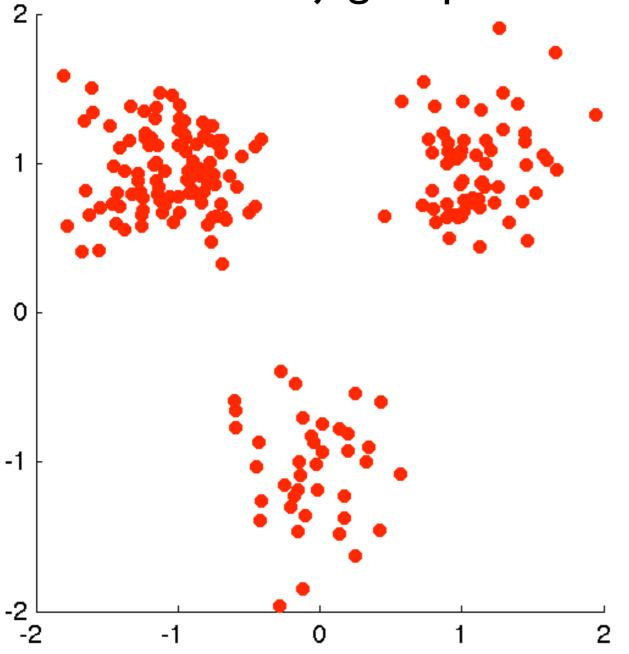
[Jain, Neal 2000]

Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest
- Non-conjugate prior

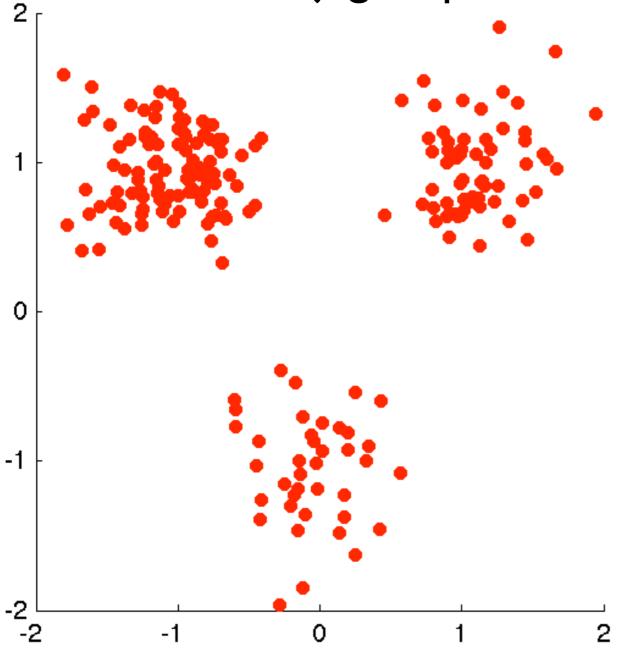
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest
- Non-conjugate prior



Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest
- Non-conjugate prior

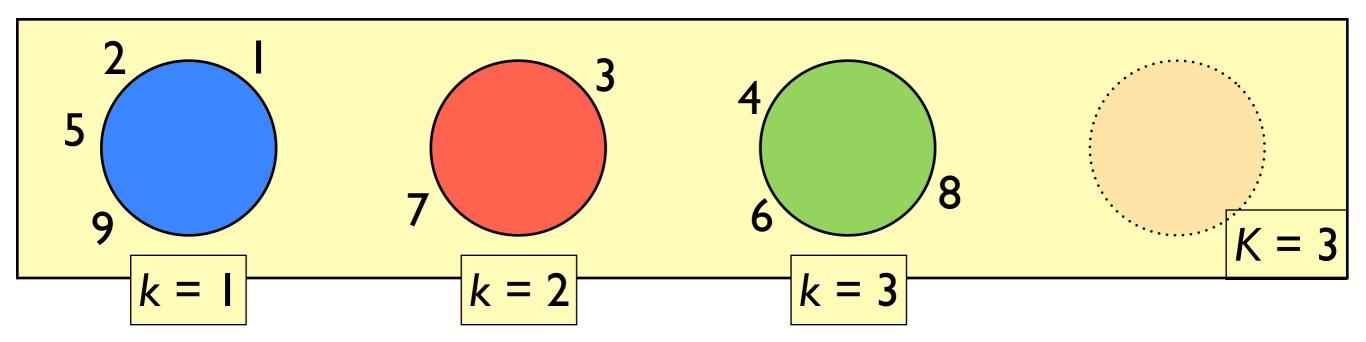


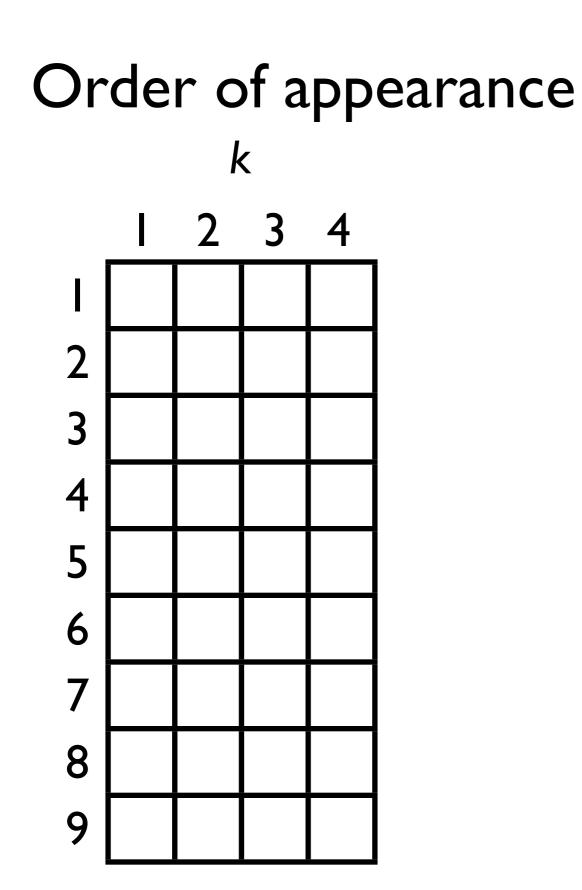
Instead try: Metropolis Hastings, auxiliary variables, etc

[Neal 2000]

• For previous Gibbs sampler, choose by computational convenience

Order of appearance

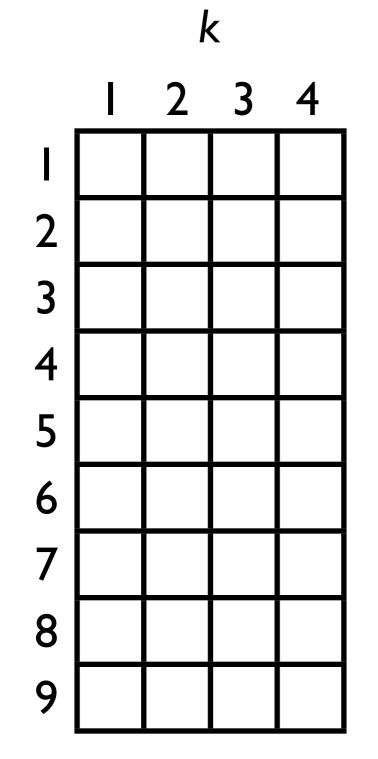




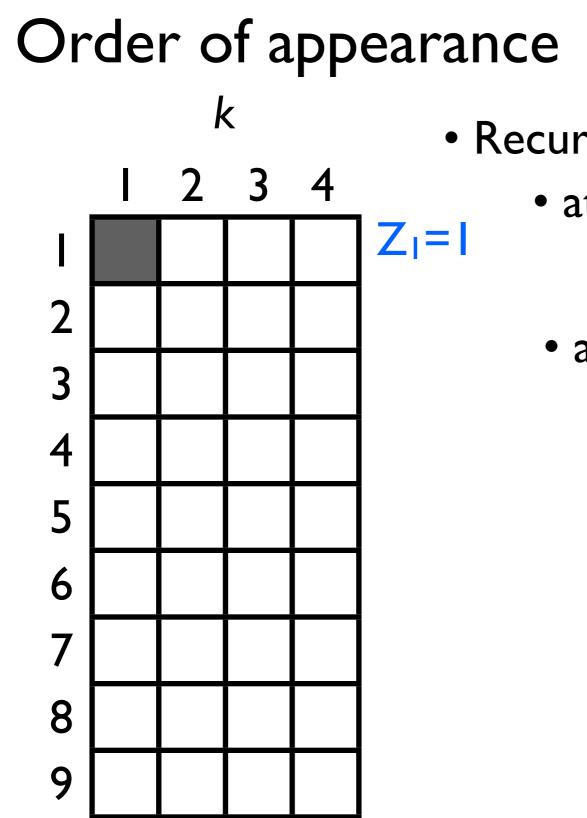
n

[Pitman 2006]

Order of appearance



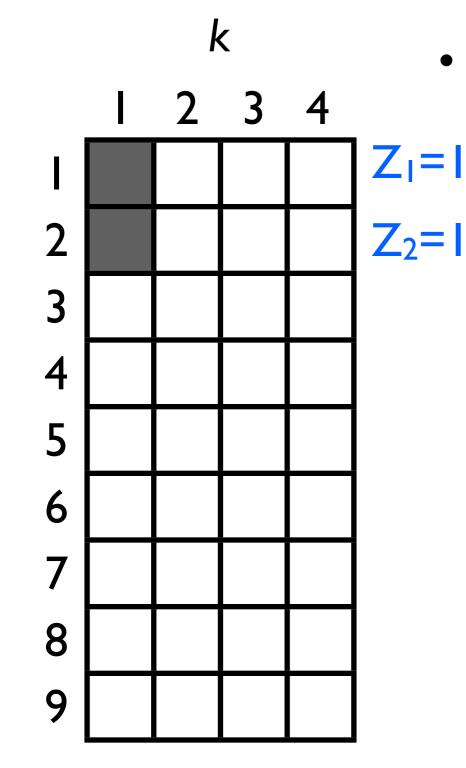
- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$



- Recursively: nth person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto \theta$

Order of appearance

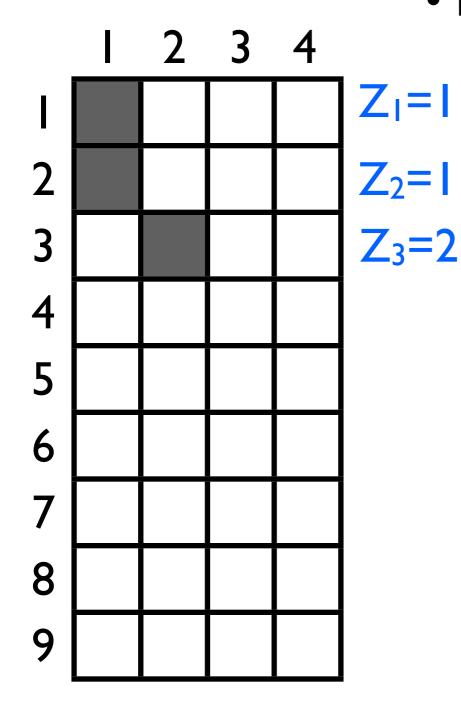
- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$



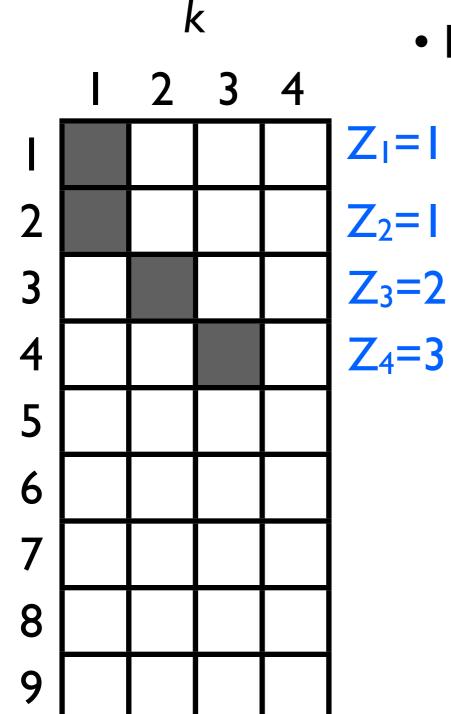
Order of appearance

k

- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

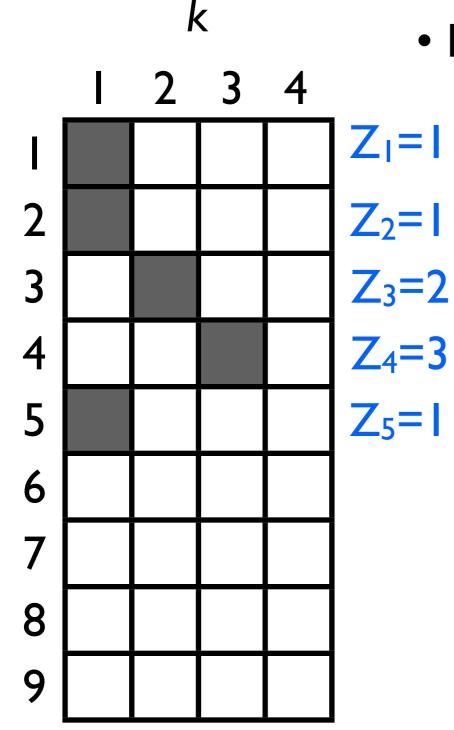


Order of appearance



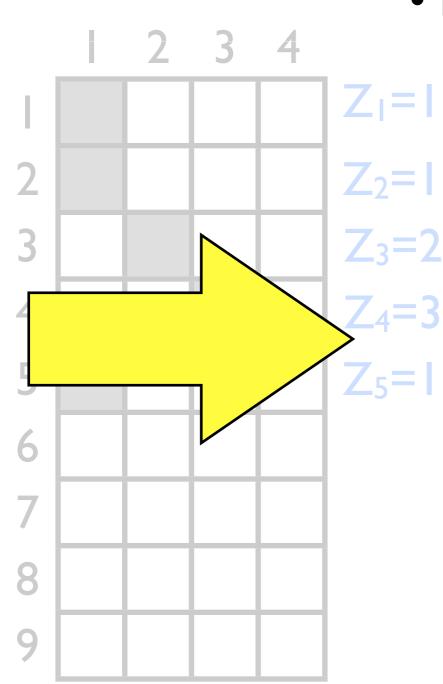
- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

Order of appearance



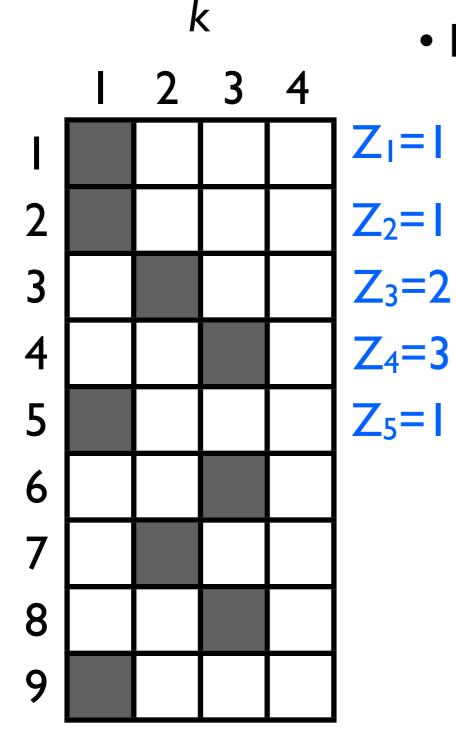
- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

Order of appearance



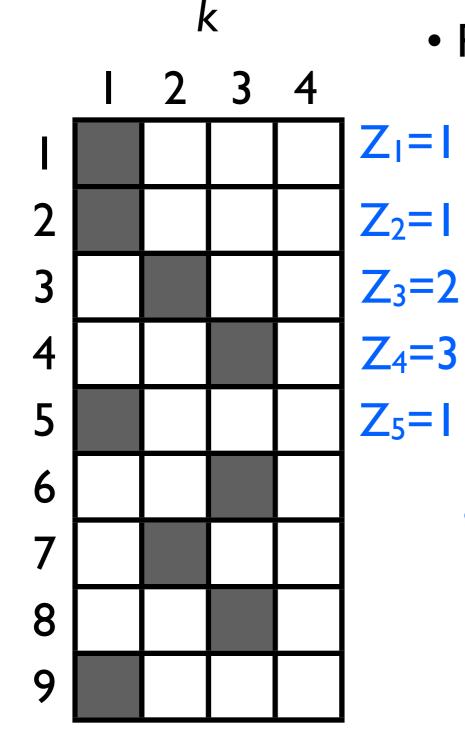
- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

Order of appearance



- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

Order of appearance



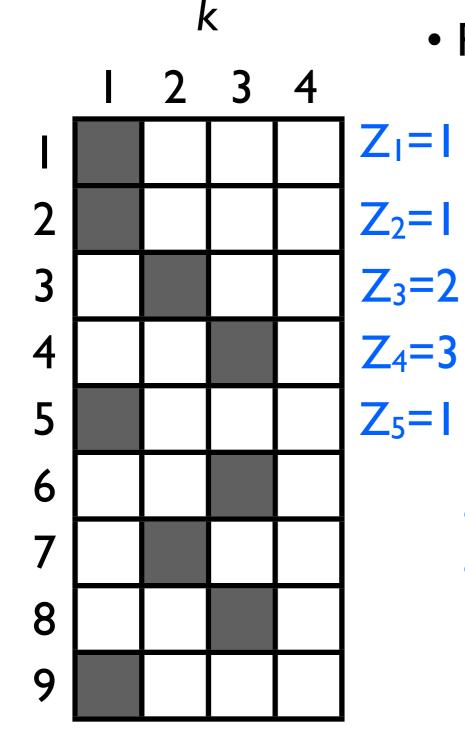
n

- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

• The clustering is exchangeable

Cluster labels

Order of appearance

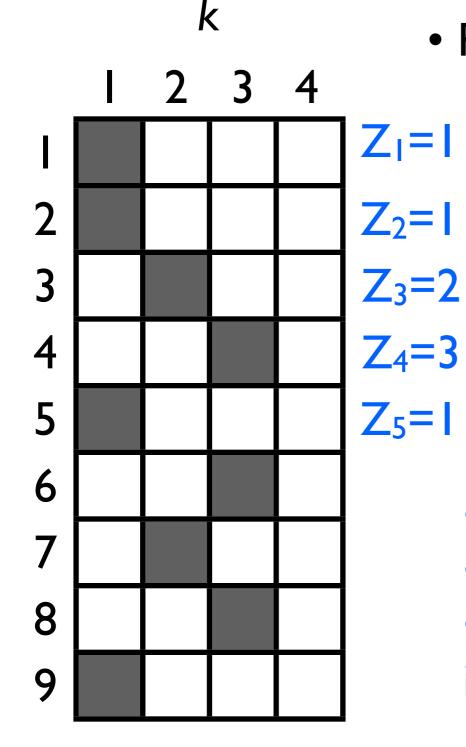


- Recursively: *n*th person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto \theta$

- The clustering is exchangeable
- Z_n here NOT exchangeable

Cluster labels

Order of appearance



- Recursively: *n*th person sits
 - at table k (of K) with probability \propto (# people there)
 - at new table K+1 with probability $\propto \theta$

- The clustering is exchangeable
- Z_n here NOT exchangeable
- A matrix is a clustering and an integer labeling

I. Clusters

Overview

Distribution

- Clusters (Example: Chinese restaurant process)
- Data given clusters (Example: Gaussian mixture)
- ♦ Posterior
- Proportions
- Random probability measure

I. Clusters

- Overview
- Distribution
- Proportions
 - Generative model
 - ♦ Posterior
- Random probability measure

I. Clusters

- Overview
- Distribution
- Proportions
 - ♦ Generative model
 - ♦ Posterior
- Random probability measure

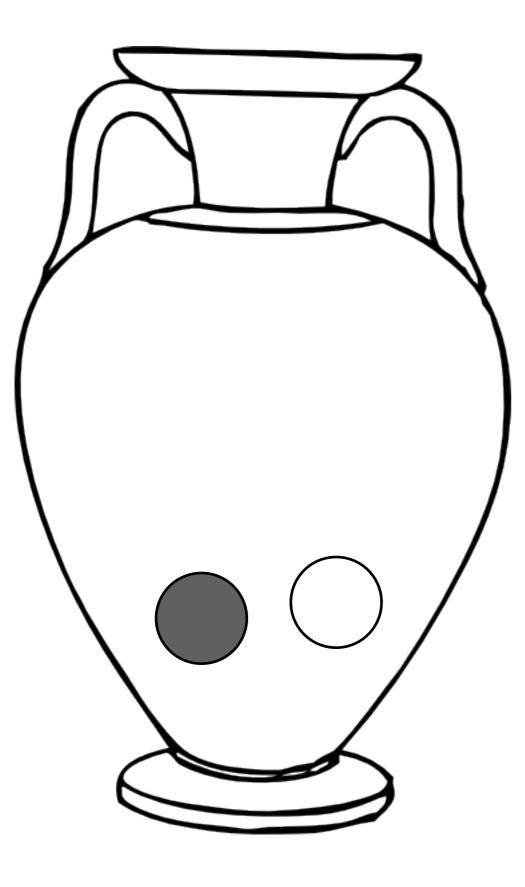
I. Clusters

Overview

Distribution

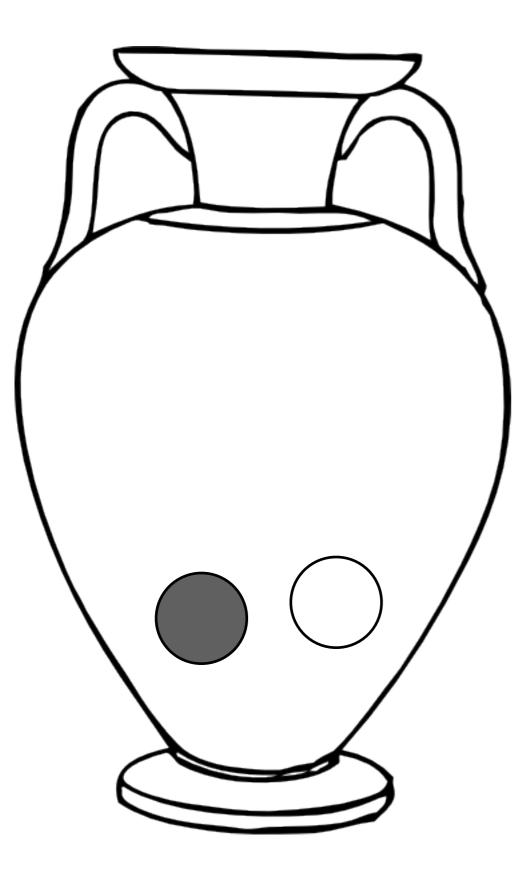
- Proportions
 - Senerative model (Example: CRP stick-breaking)
 - ♦ Posterior

• Random probability measure

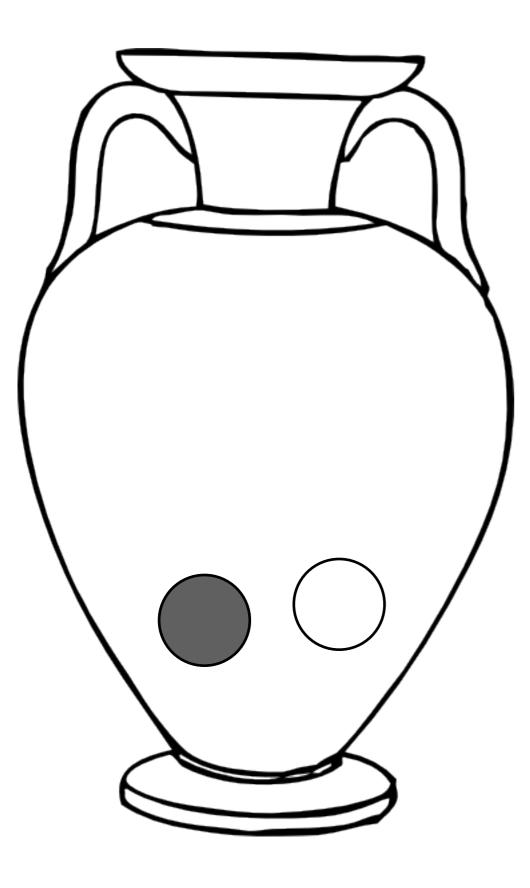


G₀ initial gray balls
W₀ initial white balls

[Polya 1930; Freedman 1965]

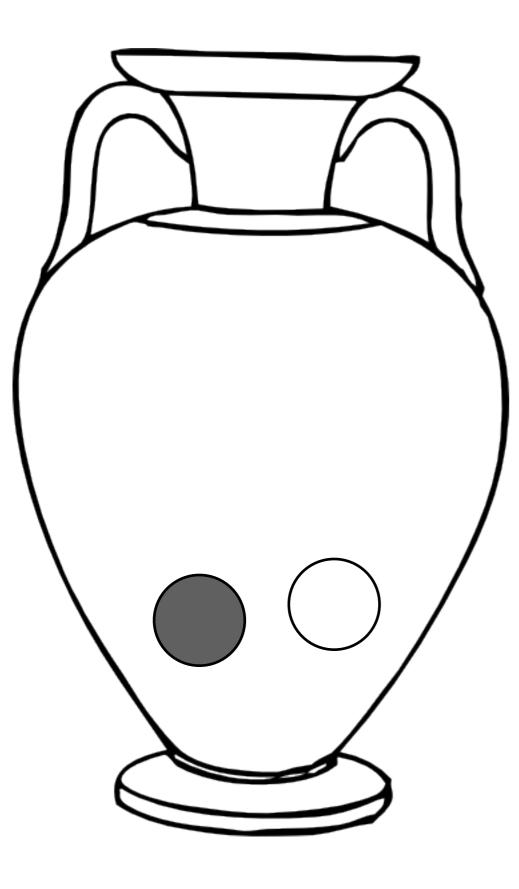


- G₀ initial gray balls
- \bullet W₀ initial white balls



- G₀ initial gray balls
- \bullet W₀ initial white balls

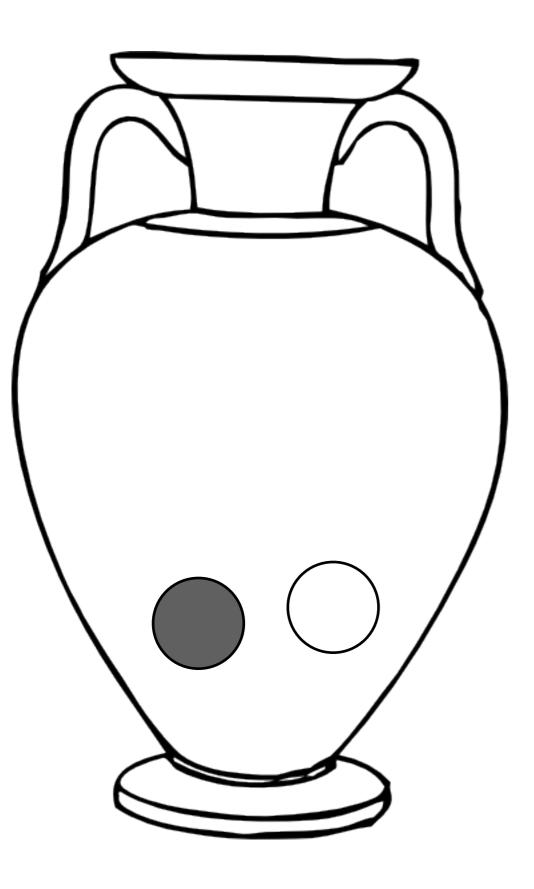
Oraw a ball uniformly from the urn



- G₀ initial gray balls
- \bullet W₀ initial white balls
- n = 1, 2, ...

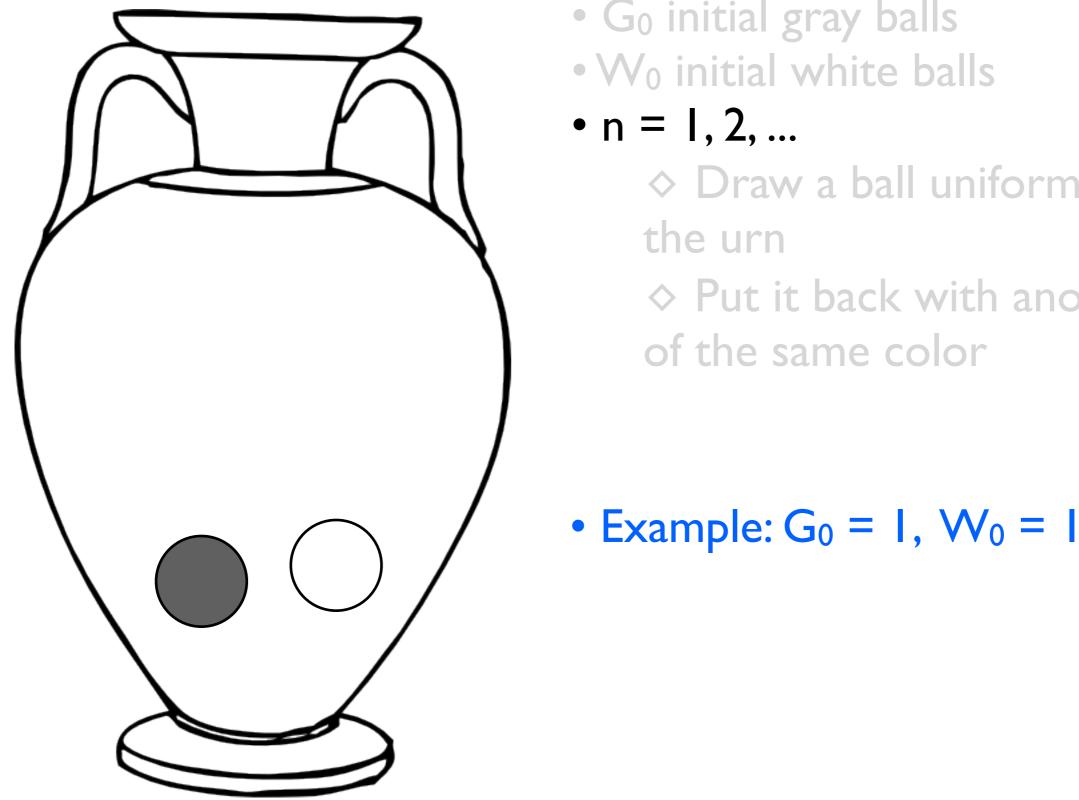
Oraw a ball uniformly from the urn

Put it back with another ball
 of the same color



- G₀ initial gray balls
 W₀ initial white balls
 - n = 1, 2, ...
 - Oraw a ball uniformly from the urn
 - Put it back with another ball of the same color

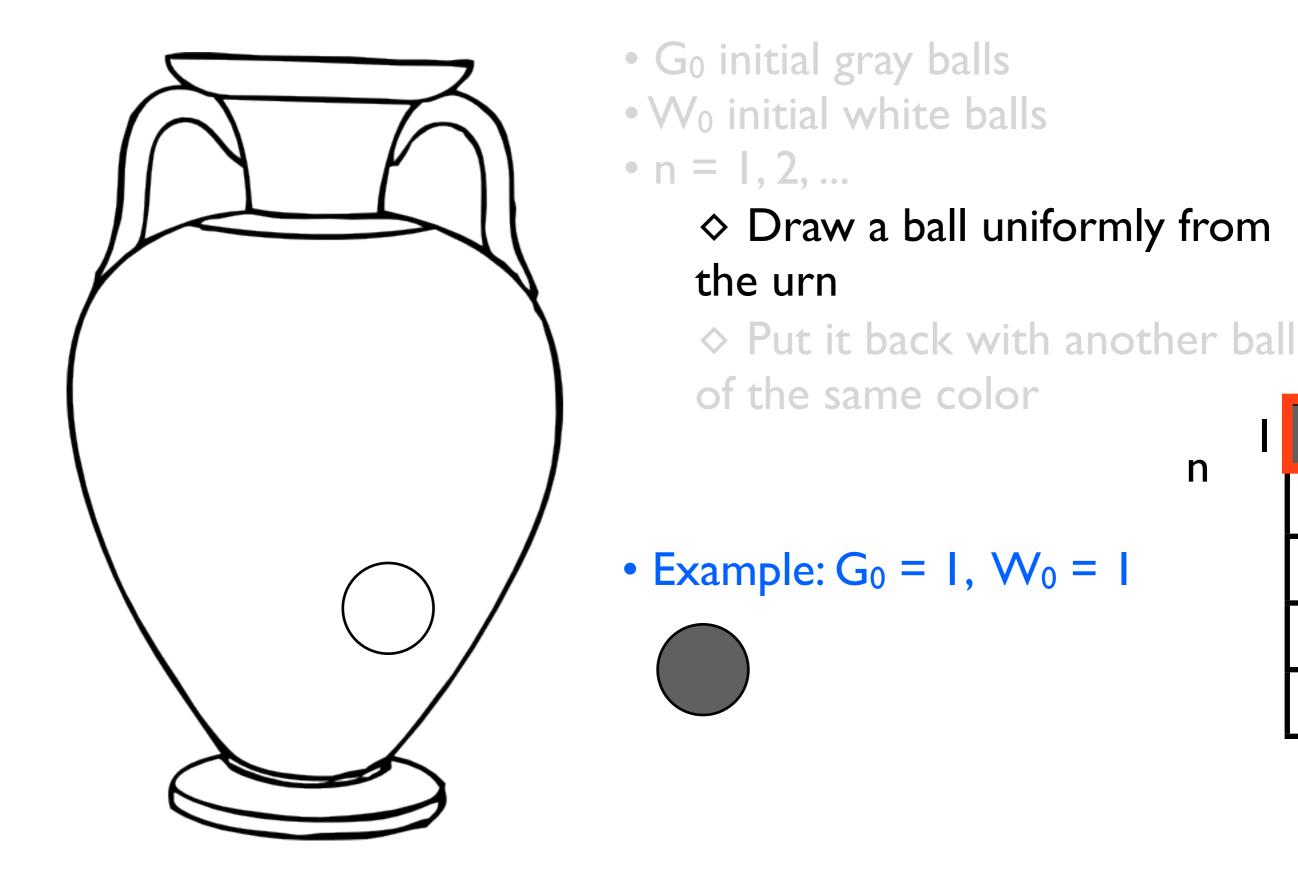
• Example: $G_0 = I$, $W_0 = I$

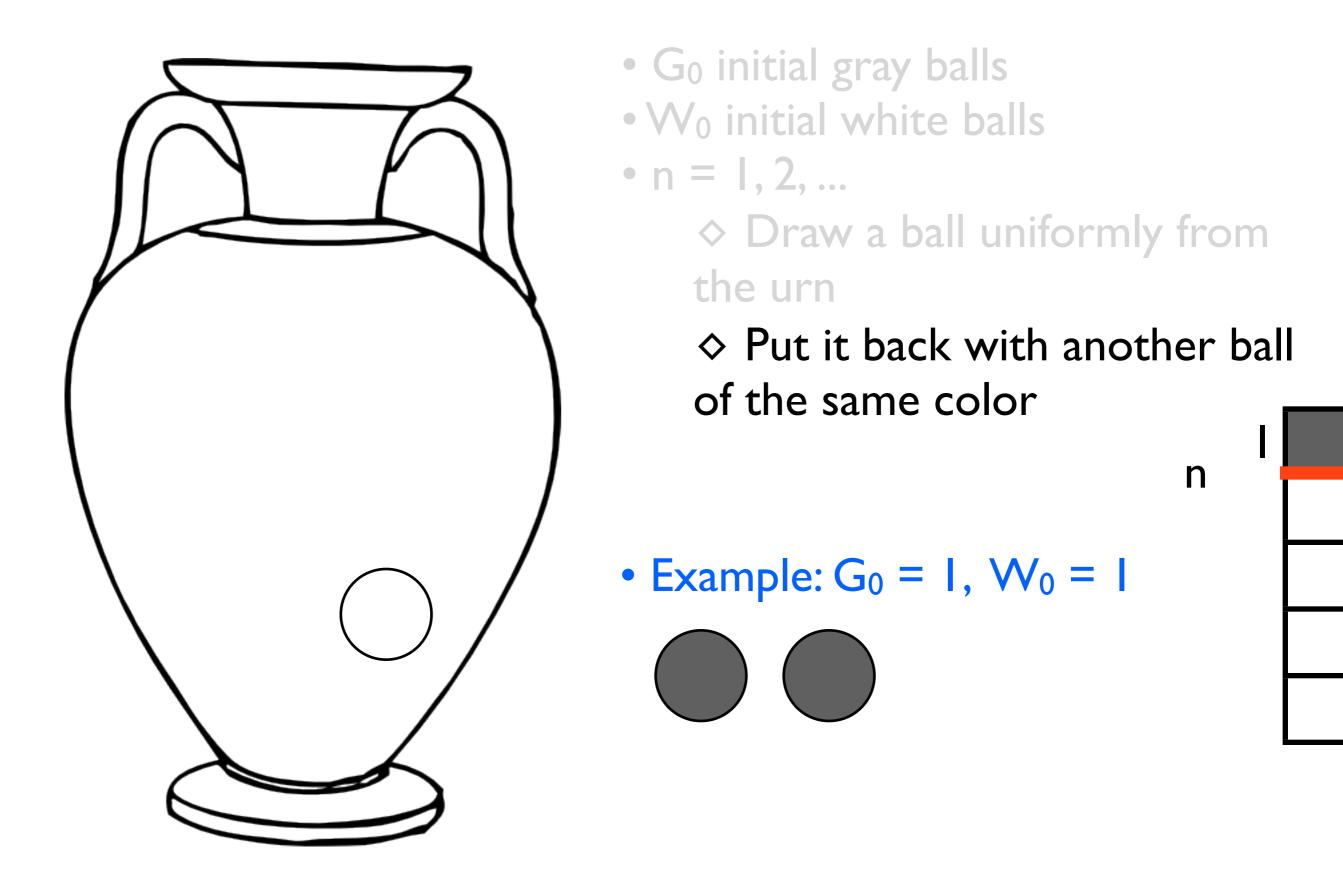


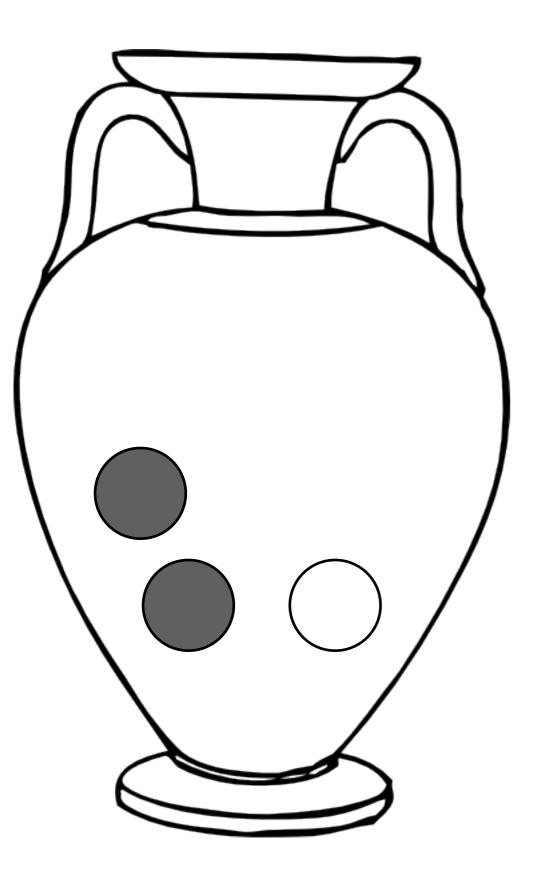
• G₀ initial gray balls • W_0 initial white balls

♦ Draw a ball uniformly from

 \diamond Put it back with another ball of the same color

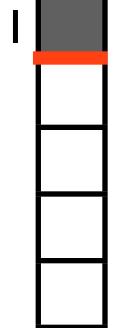


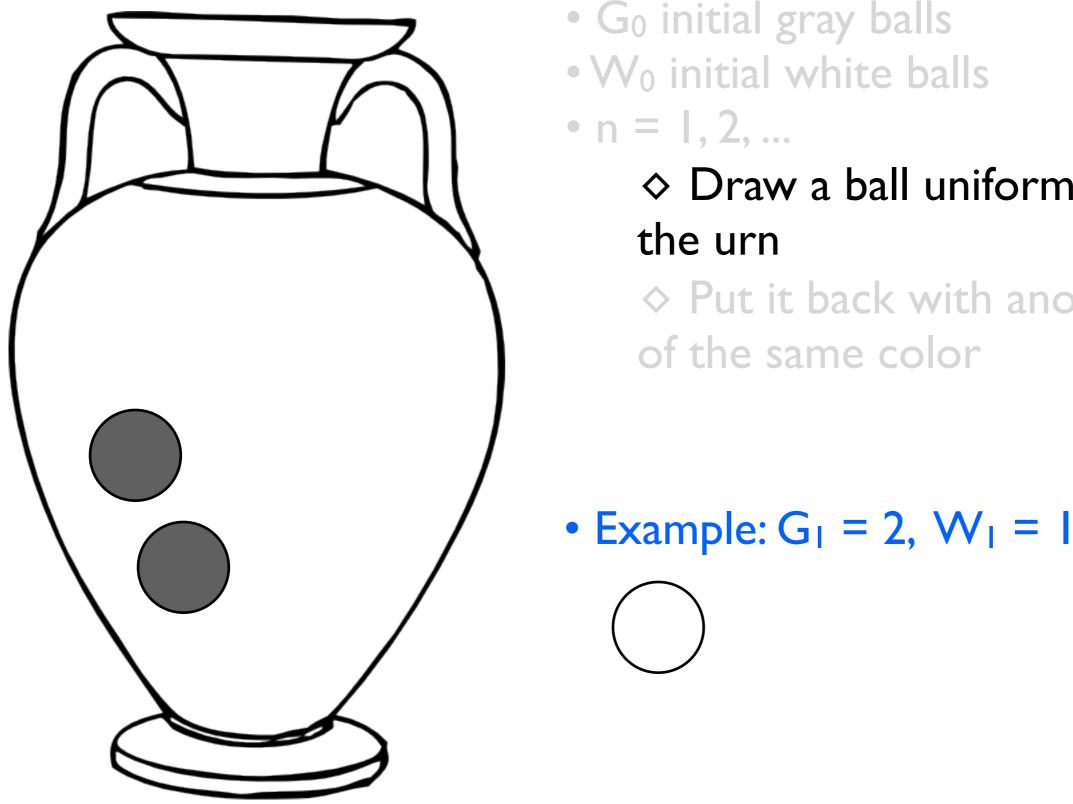




- G₀ initial gray balls
 W₀ initial white balls
- n = 1, 2, ...
 - Oraw a ball uniformly from the urn
 - Put it back with another ball
 of the same color

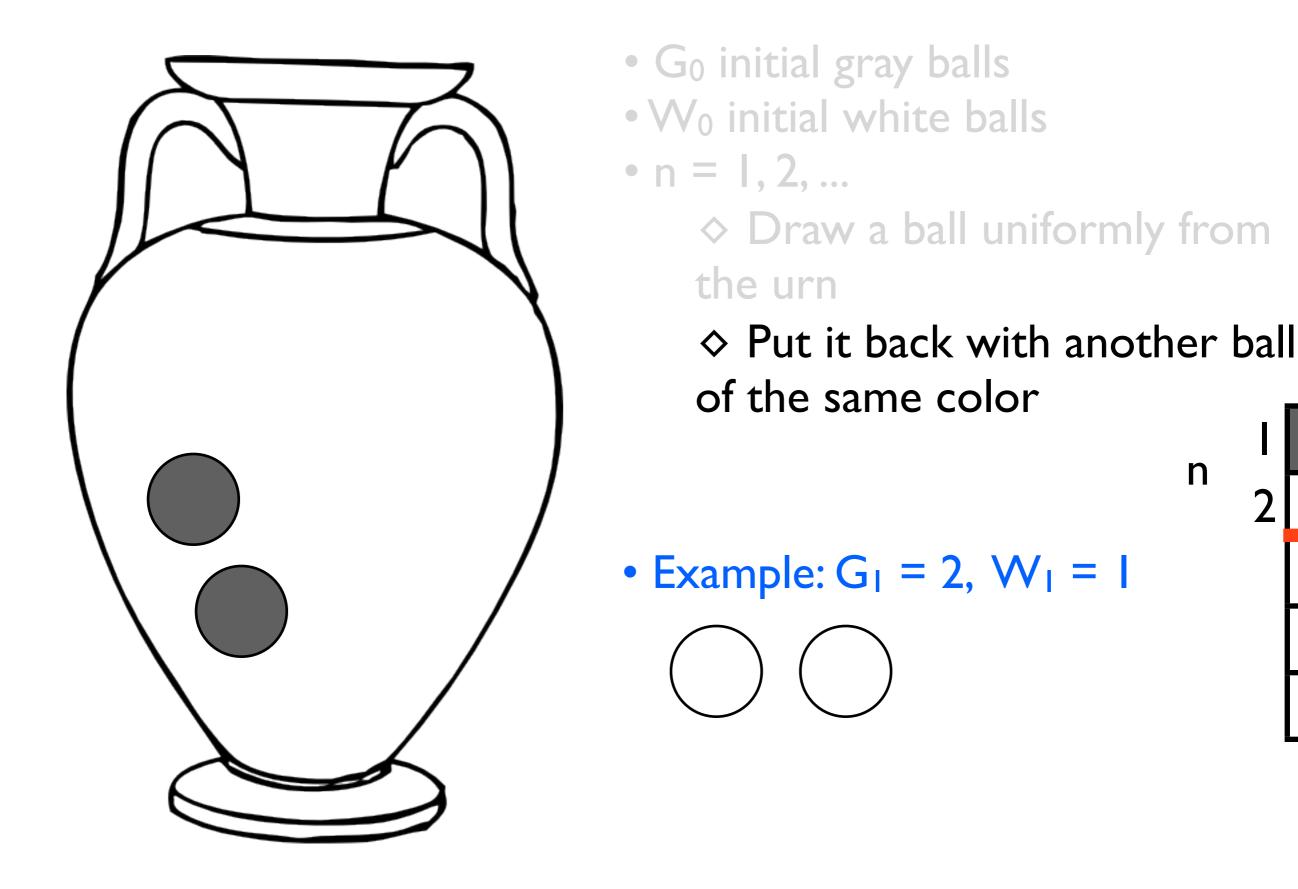
• Example: $G_1 = 2$, $W_1 = 1$





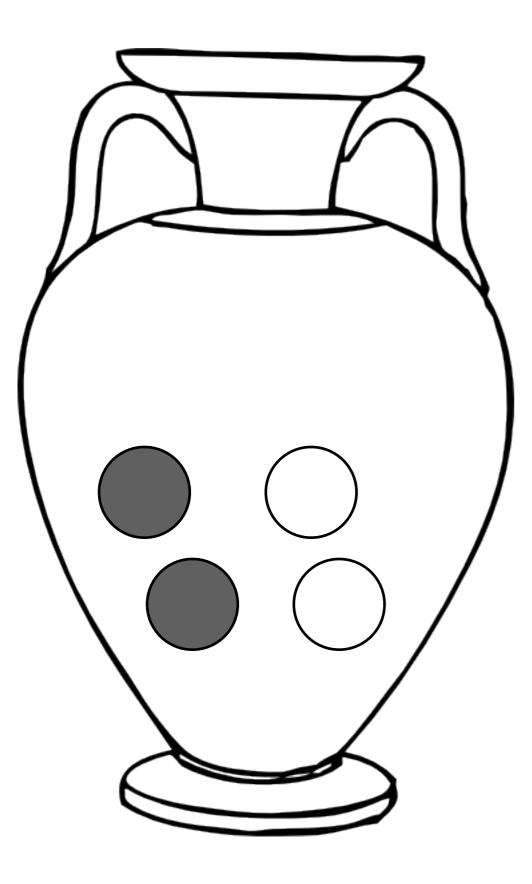
♦ Draw a ball uniformly from

 \diamond Put it back with another ball of the same color



n

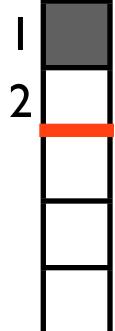
7

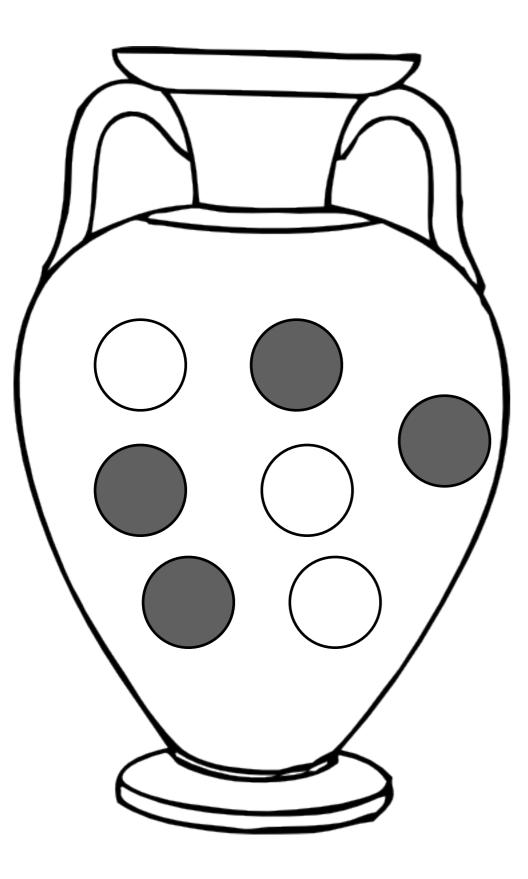


- G₀ initial gray balls
 W₀ initial white balls
- n = 1, 2, ...
 - Oraw a ball uniformly from the urn
 - Put it back with another ball
 of the same color

n

• Example: $G_2 = 2$, $W_2 = 2$



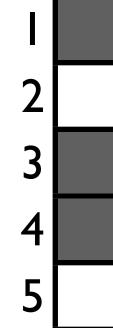


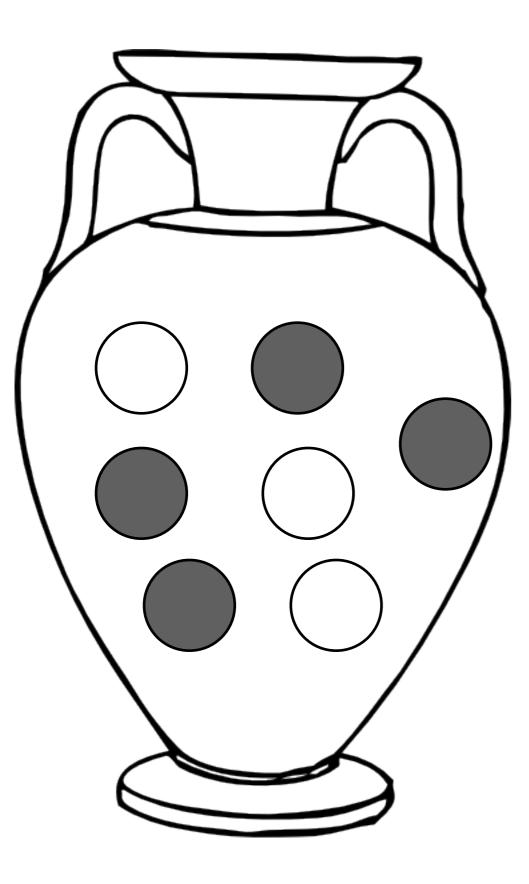
- G₀ initial gray balls
 W₀ initial white balls
- n = 1, 2, ...

Oraw a ball uniformly from the urn

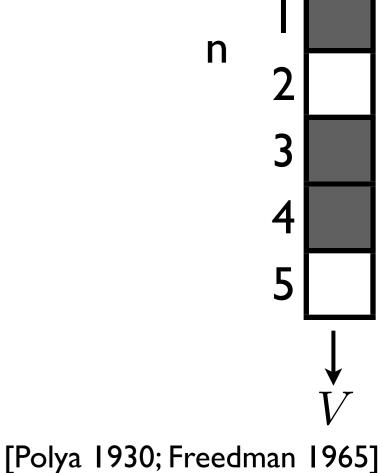
Put it back with another ball of the same color

• Example: $G_5 = 4$, $W_5 = 3$

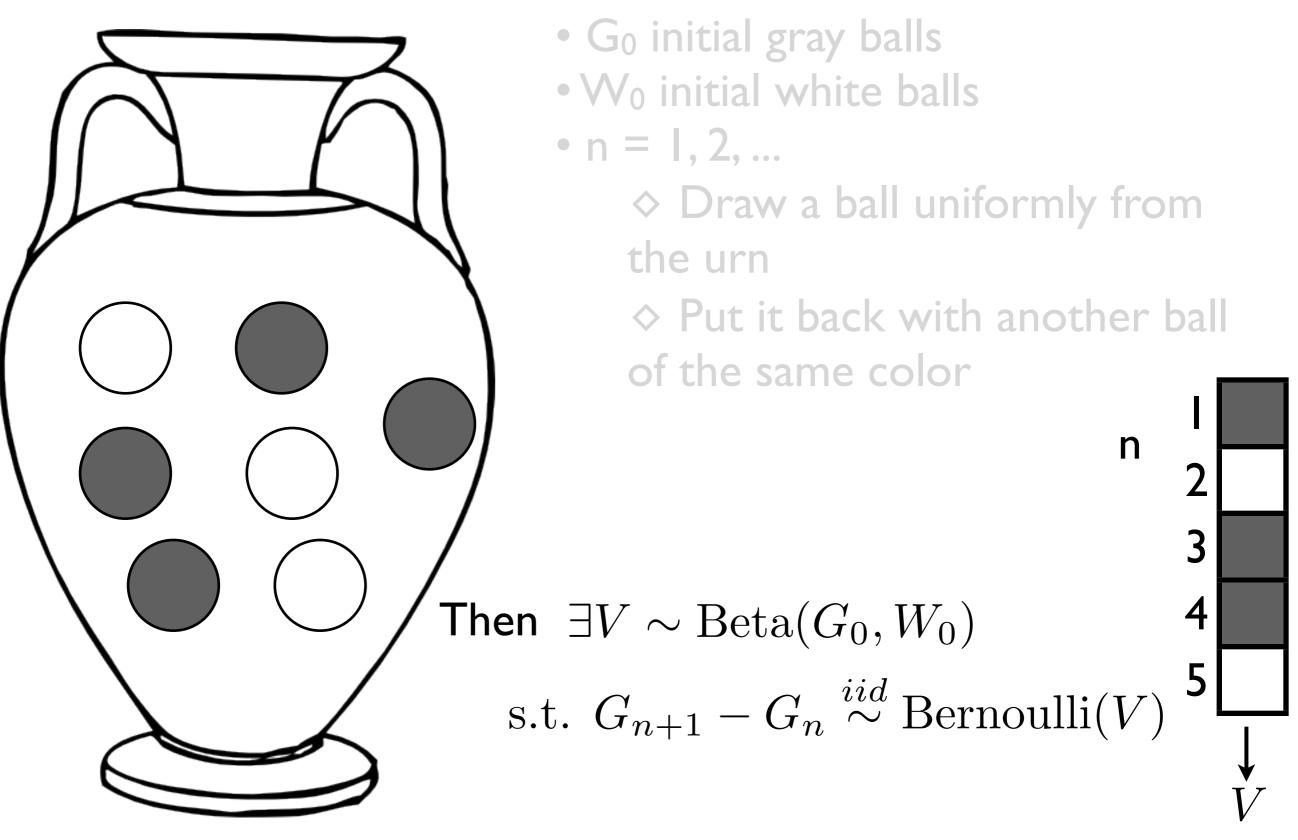




- G₀ initial gray balls
 W₀ initial white balls
- n = 1, 2, ...
 - Oraw a ball uniformly from the urn
 - Put it back with another ball of the same color

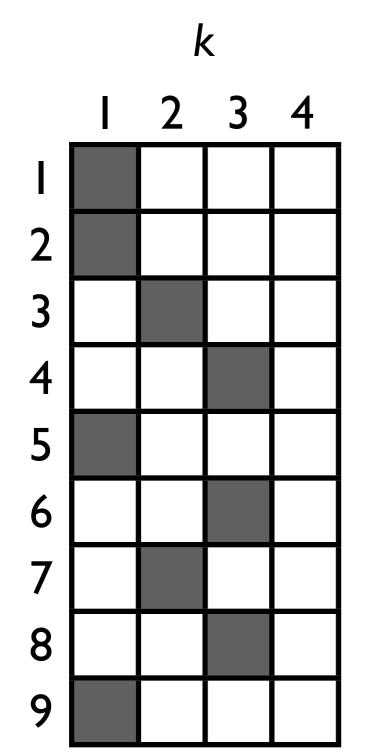




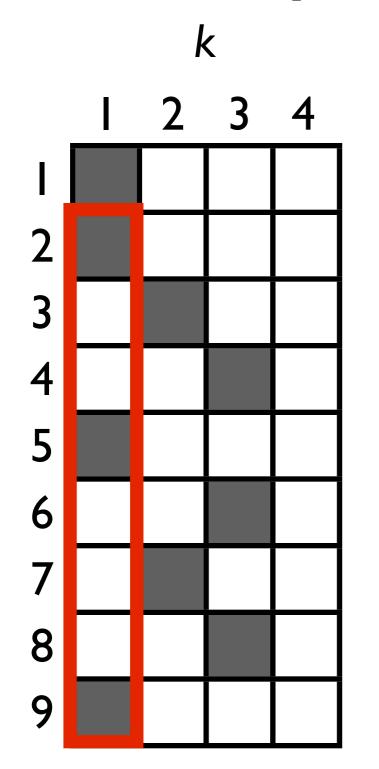


[Polya 1930; Freedman 1965]

- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$

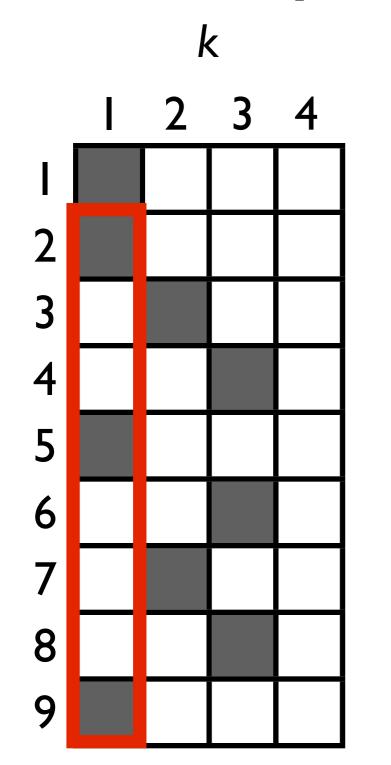


- Recursively: *n*th person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table K+1 with probability $\propto \theta$



• Recursively: *n*th person sits

- at table k (of K) with probability \propto (# people there)
- at new table K+1 with probability $\propto \theta$

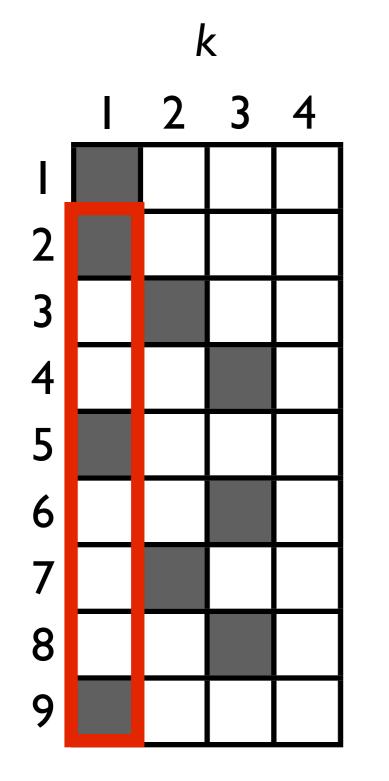


• Recursively: *n*th person sits

• at table k (of K) with probability \propto (# people there)

• at new table K+1 with probability $\propto \theta$

• First cluster: Polya urn with $G_{1,0}=1, W_{1,0}=\theta$

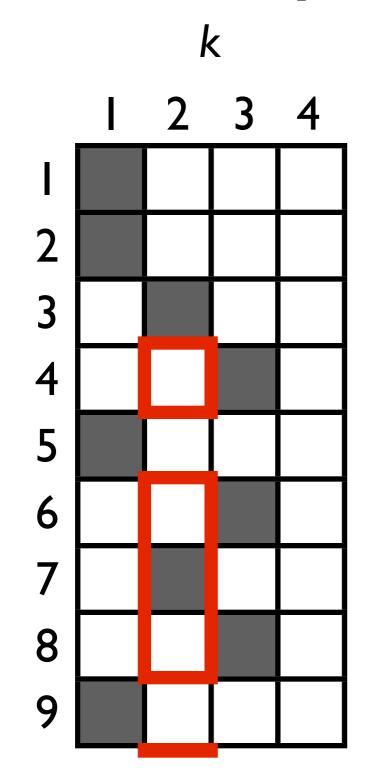


• Recursively: nth person sits

- at table k (of K) with probability \propto (# people there)
- at new table K+1 with probability $\propto \theta$

• First cluster: Polya urn with

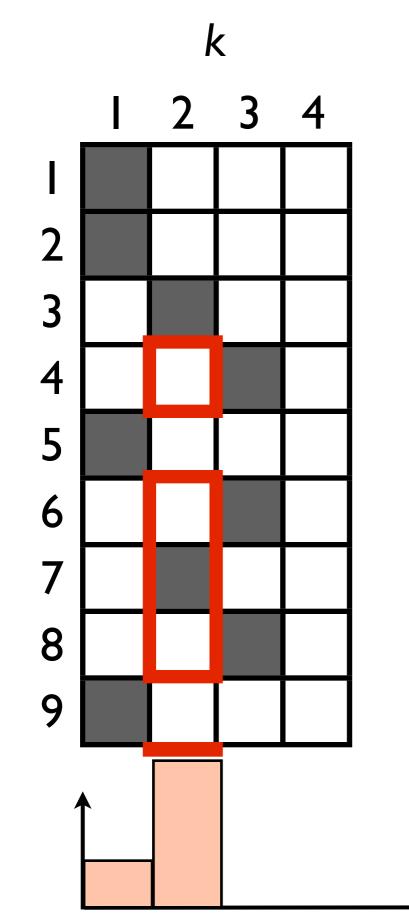
$$G_{1,0} = 1, W_{1,0} = \theta$$
$$V_1 \sim \text{Beta}(1,\theta)$$



• Recursively: *n*th person sits

- at table k (of K) with probability \propto (# people there)
- at new table K+1 with probability $\propto \theta$
- First cluster: Polya urn with $G_{1,0} = 1, W_{1,0} = \theta$ $V_1 \sim \text{Beta}(1, \theta)$

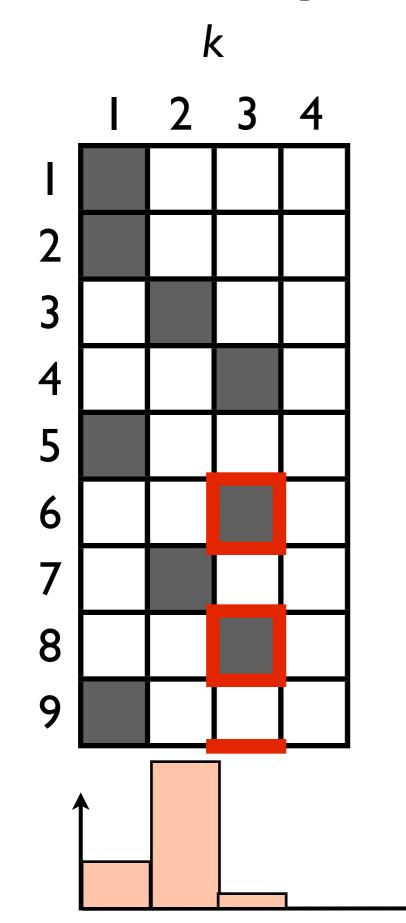
- Second cluster if not in first: Polya urn $G_{2,0}=1, W_{2,0}=\theta$



• Recursively: nth person sits

- at table k (of K) with probability \propto (# people there)
- at new table K+1 with probability $\propto \theta$
- First cluster: Polya urn with $G_{1,0} = 1, W_{1,0} = \theta$ $V_1 \sim \text{Beta}(1, \theta)$

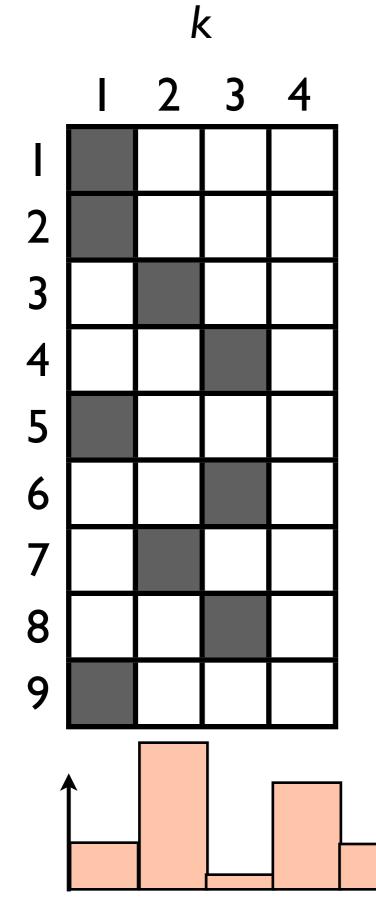
• Second cluster if not in first: Polya urn $G_{2,0} = 1, W_{2,0} = \theta$ $V_2 \sim \text{Beta}(1, \theta)$

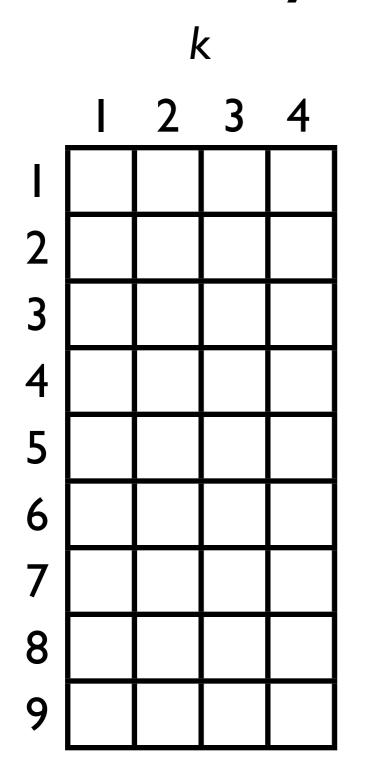


• Recursively: nth person sits

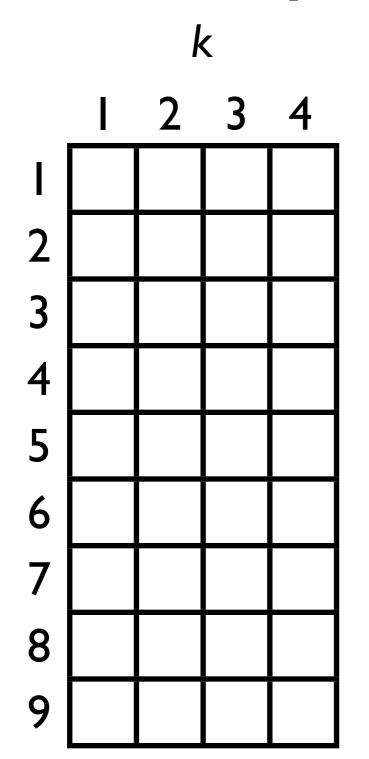
- at table k (of K) with probability \propto (# people there)
- at new table K+1 with probability $\propto \theta$
- First cluster: Polya urn with $G_{1,0} = 1, W_{1,0} = \theta$ $V_1 \sim \text{Beta}(1, \theta)$

• Second cluster if not in first: Polya urn $G_{2,0} = 1, W_{2,0} = \theta$ $V_2 \sim \text{Beta}(1, \theta)$



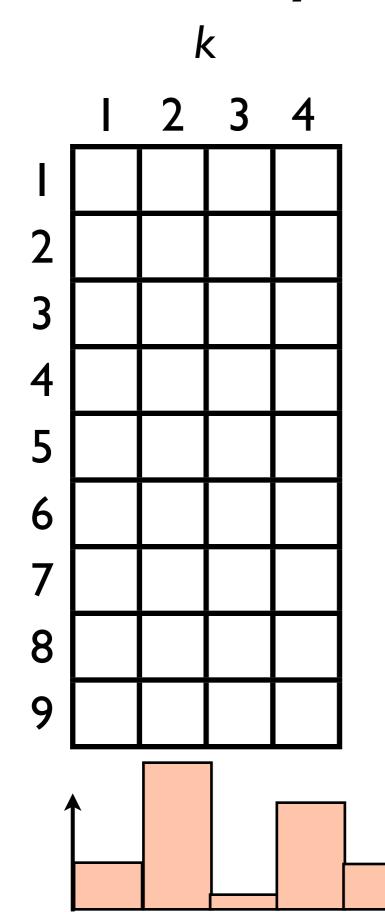


Another way to generate the CRP:



Another way to generate the CRP:

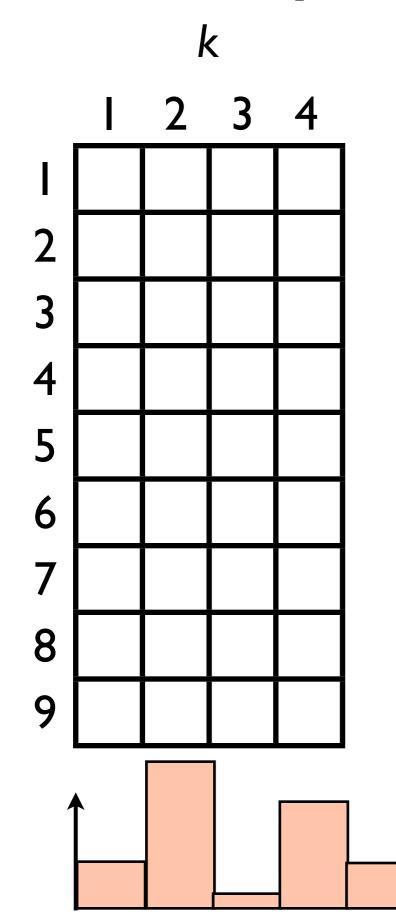
• Draw random beta variables



n

Another way to generate the CRP:

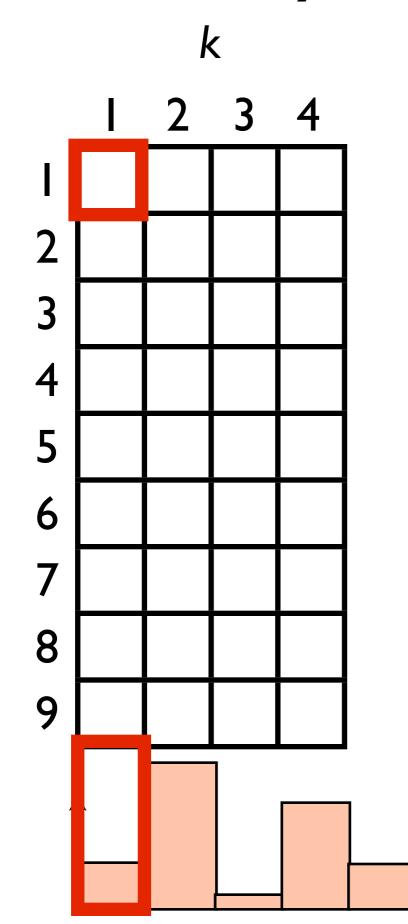
• Draw random beta variables



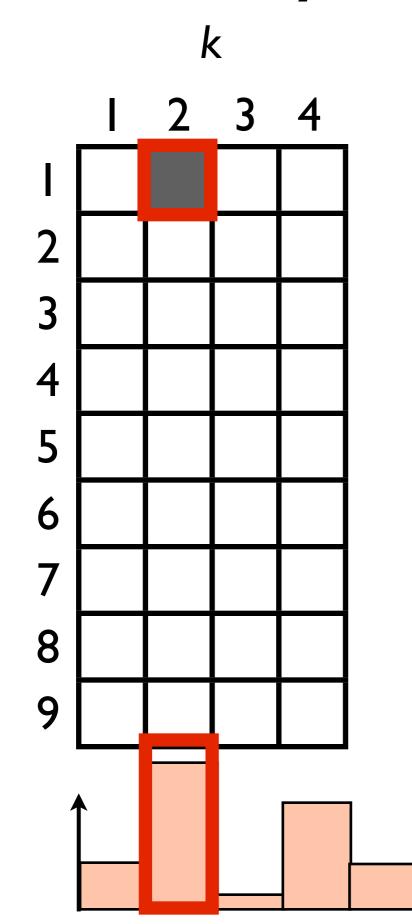
n

Another way to generate the CRP:

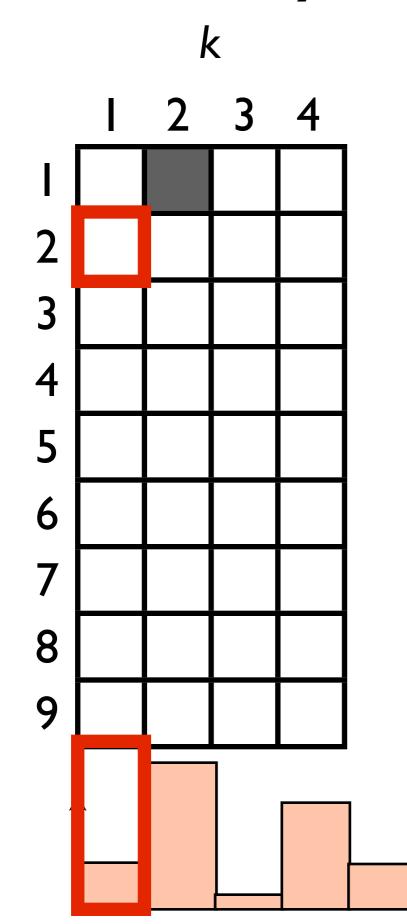
- Draw random beta variables
- For each n, Bernoulli coin flips until success



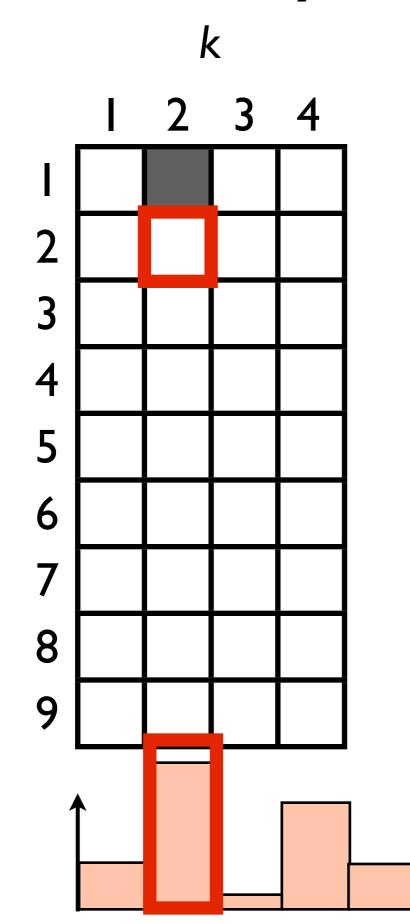
- Draw random beta variables
- For each n, Bernoulli coin flips until success



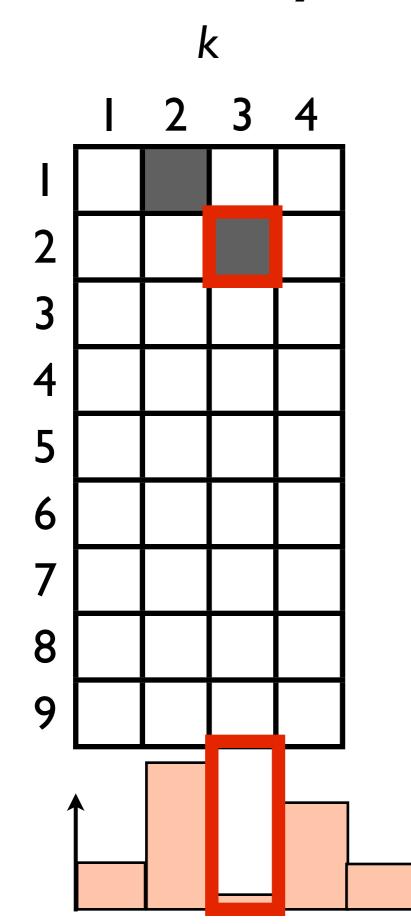
- Draw random beta variables
- For each n, Bernoulli coin flips until success



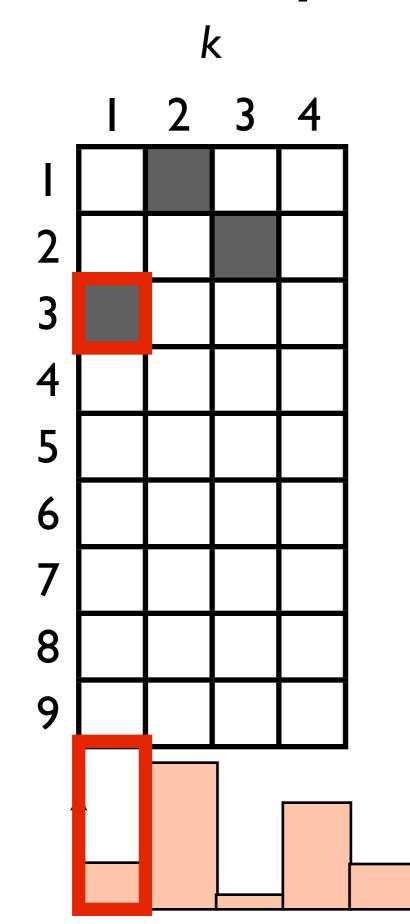
- Draw random beta variables
- For each n, Bernoulli coin flips until success



- Draw random beta variables
- For each n, Bernoulli coin flips until success

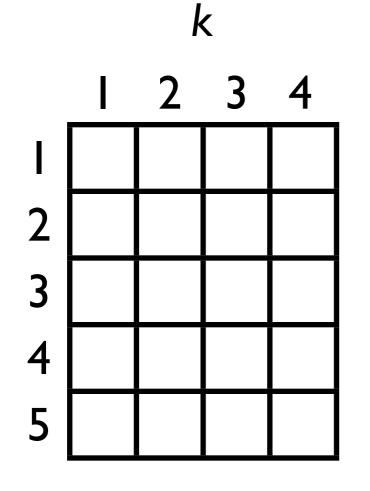


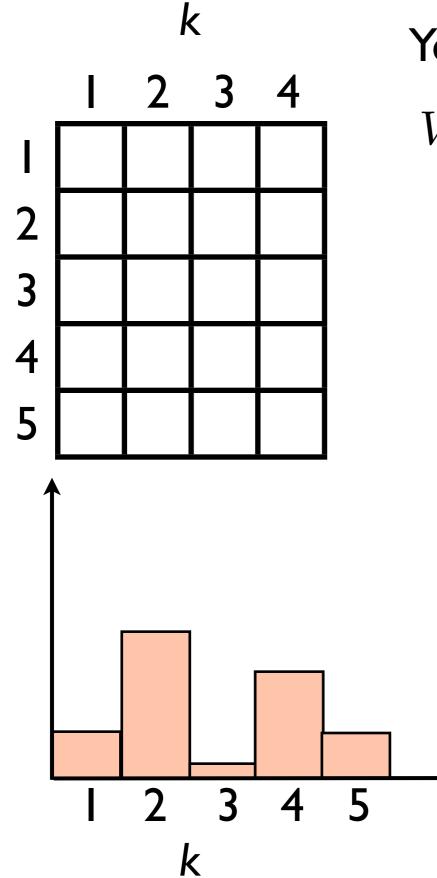
- Draw random beta variables
- For each n, Bernoulli coin flips until success



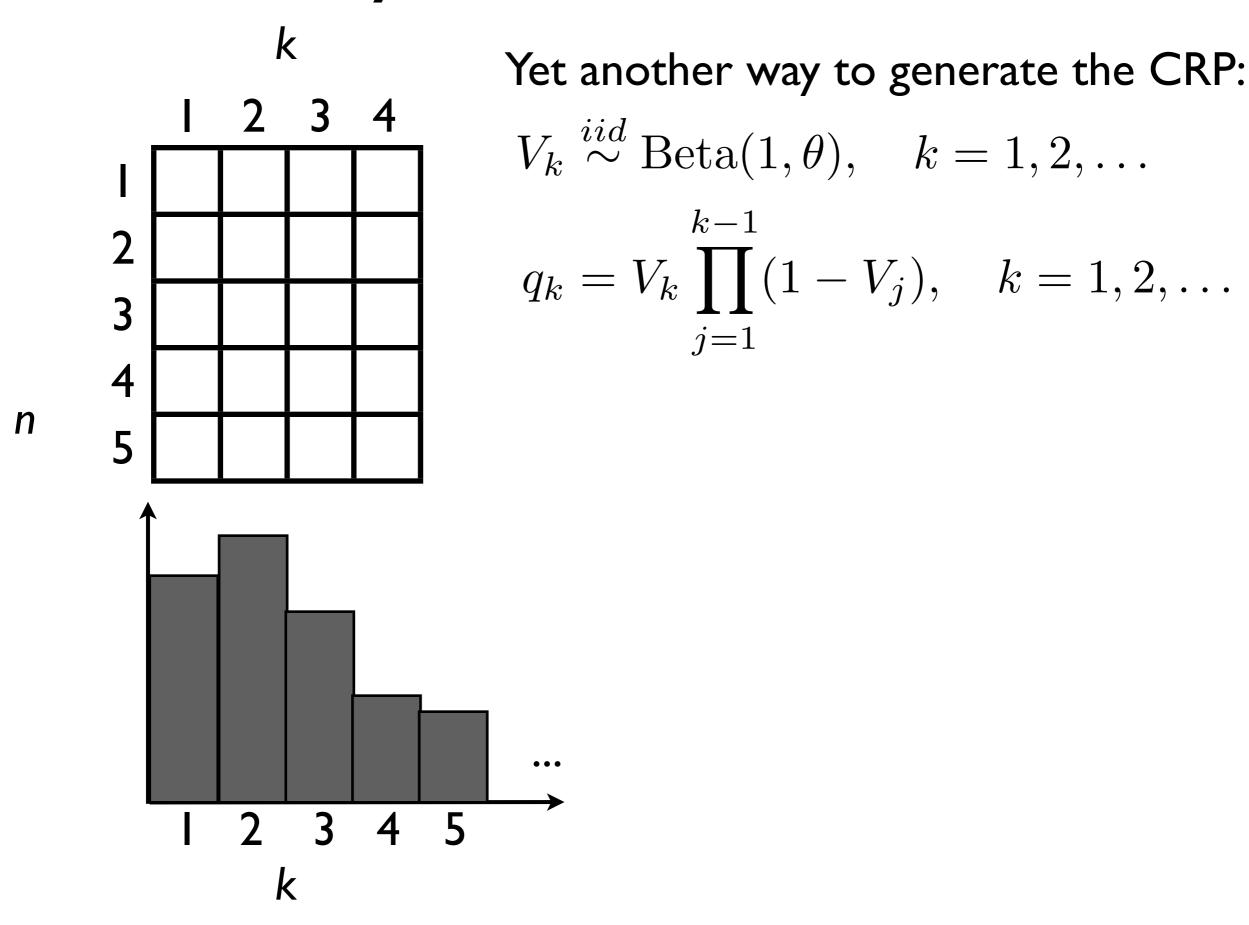
- Draw random beta variables
- For each n, Bernoulli coin flips until success

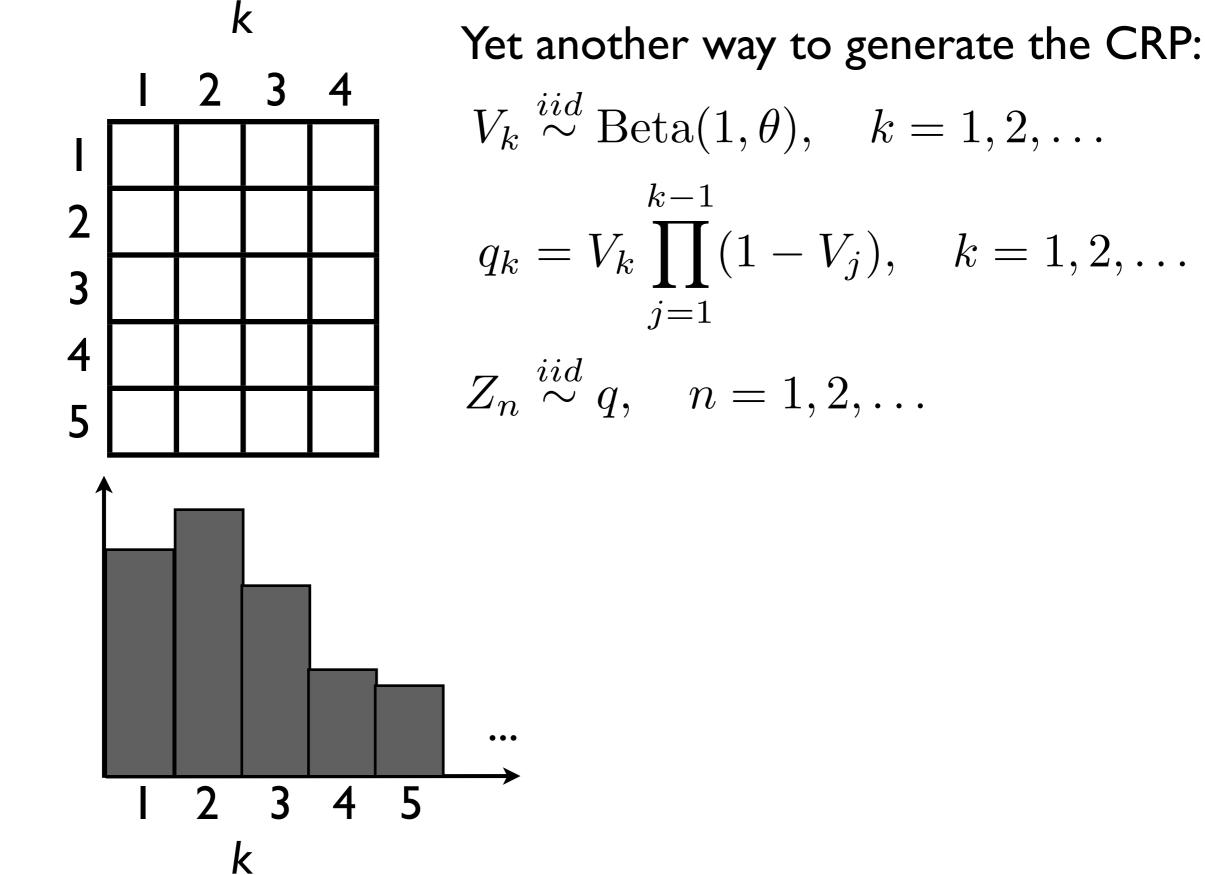
Yet another way to generate the CRP:

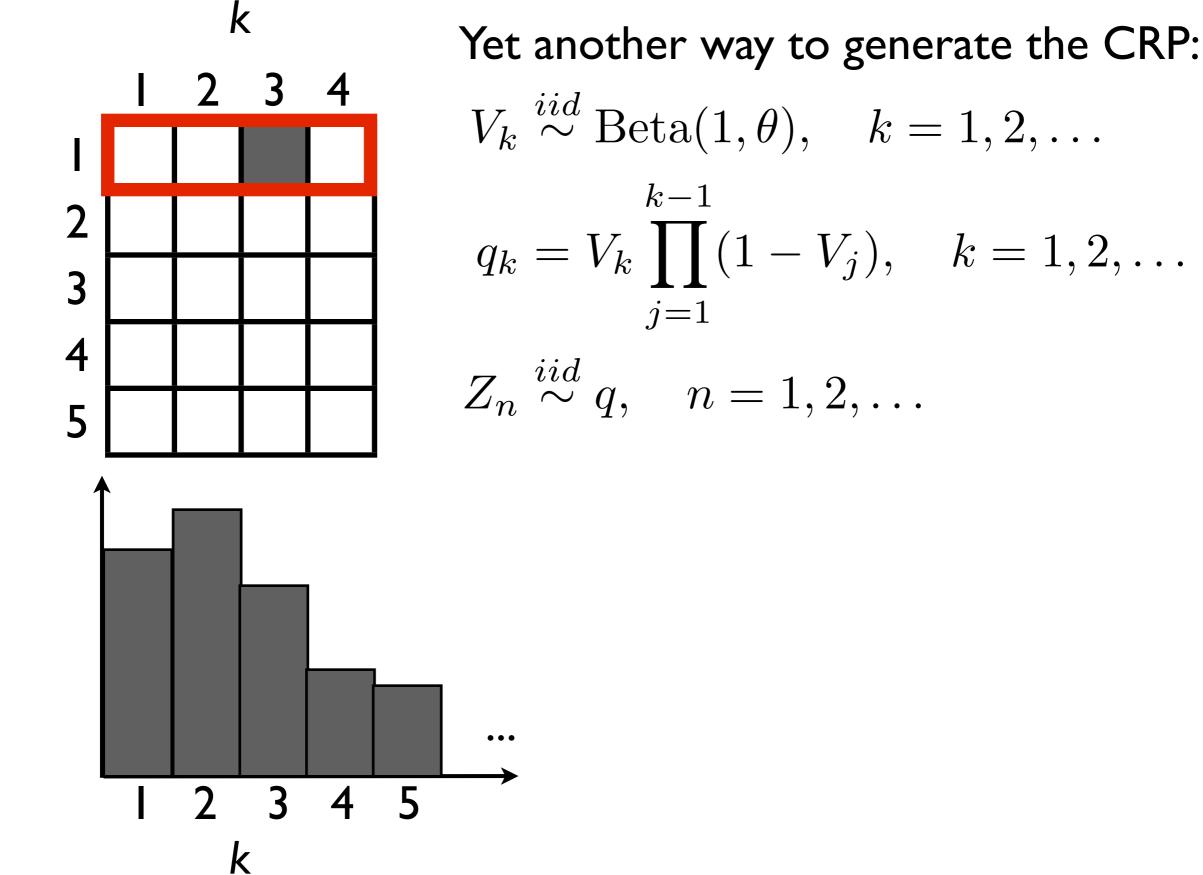


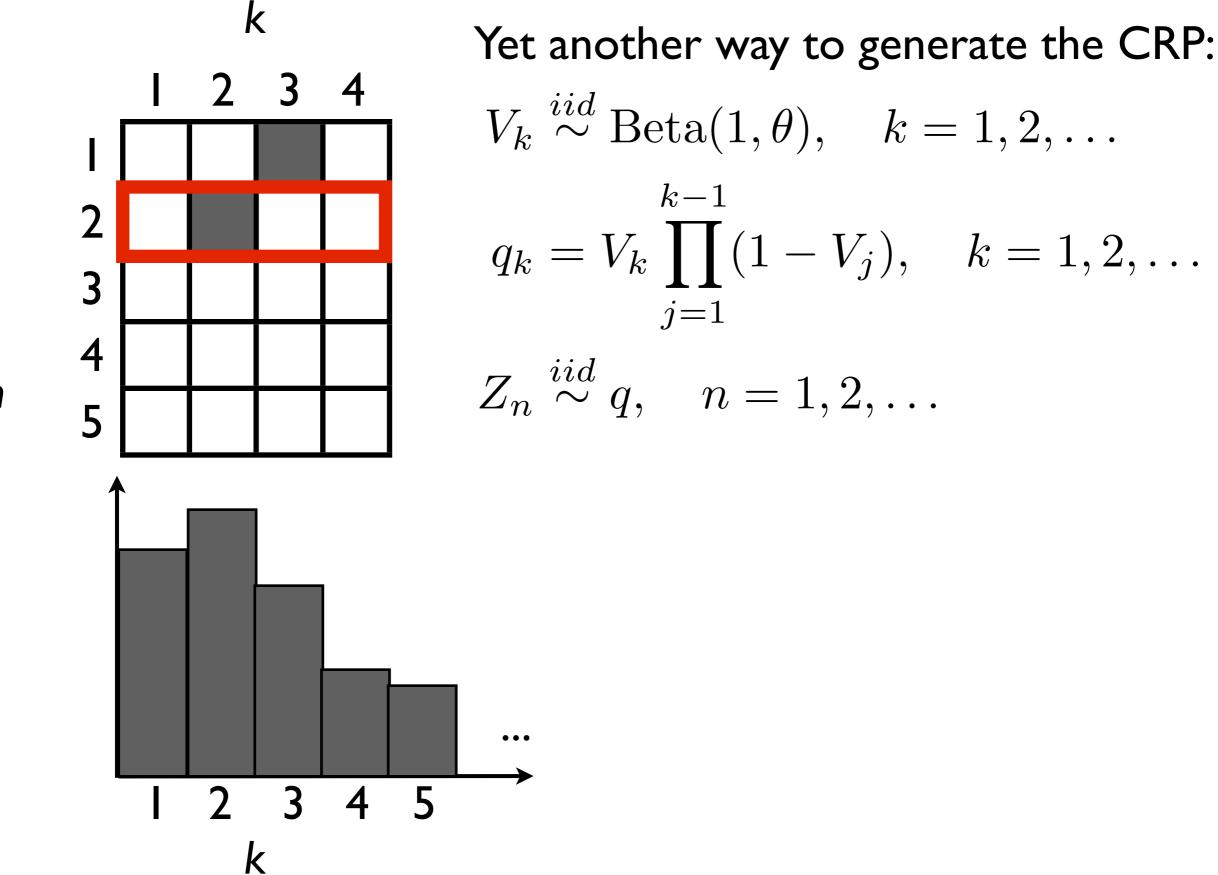


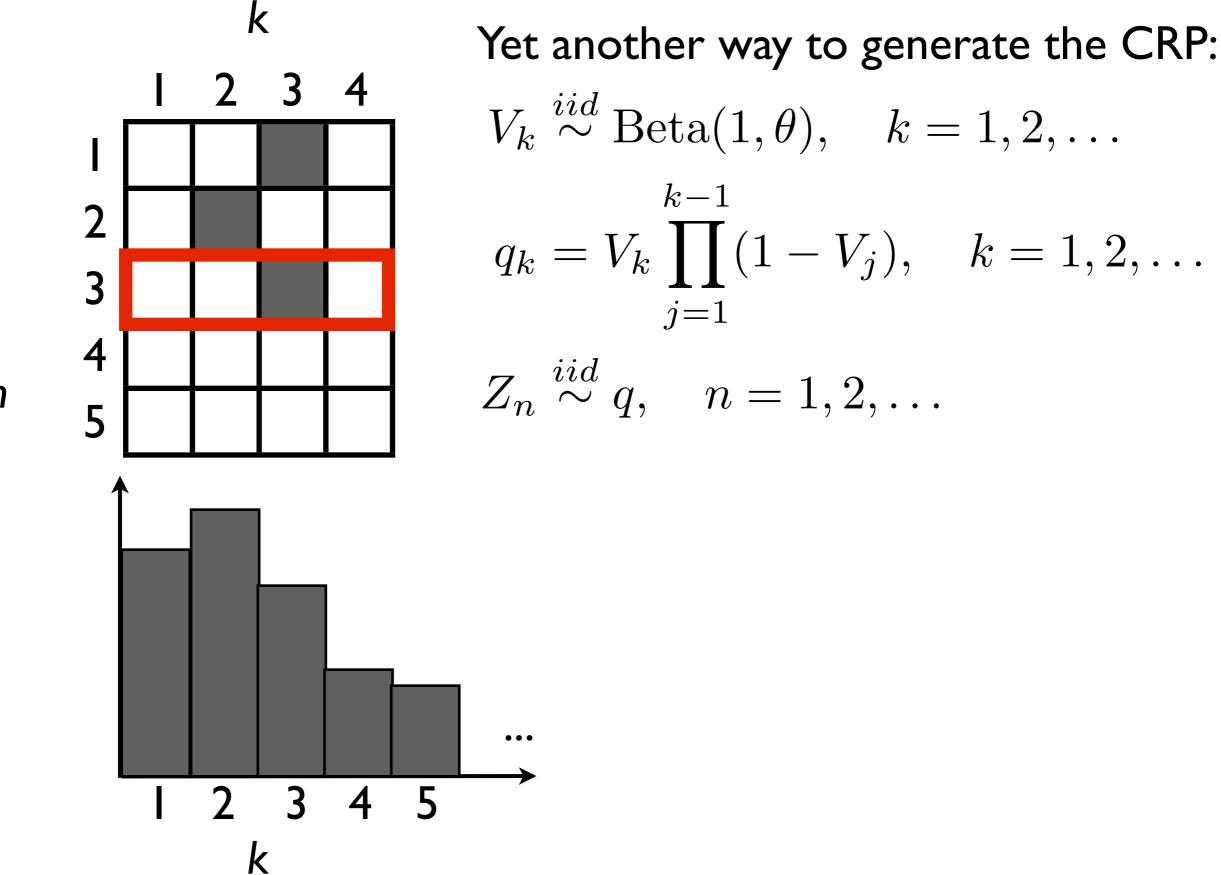
Yet another way to generate the CRP: $V_k \stackrel{iid}{\sim} \text{Beta}(1, \theta), \quad k = 1, 2, \dots$

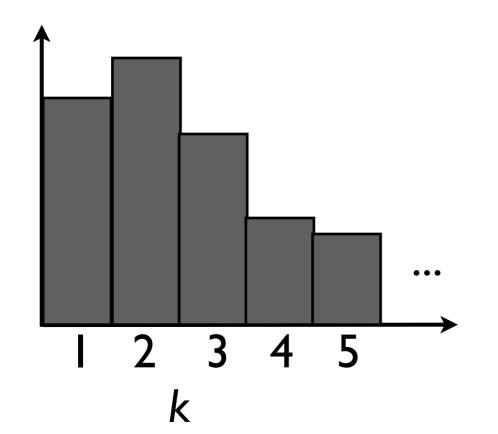




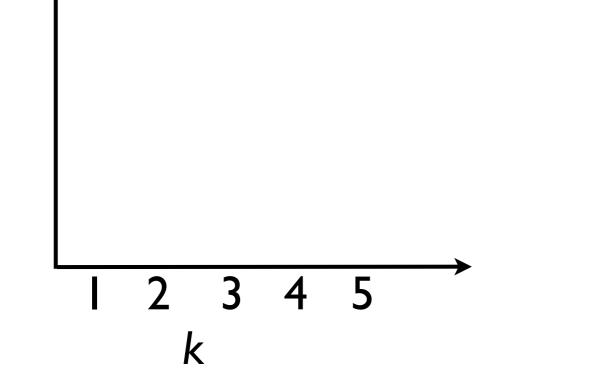


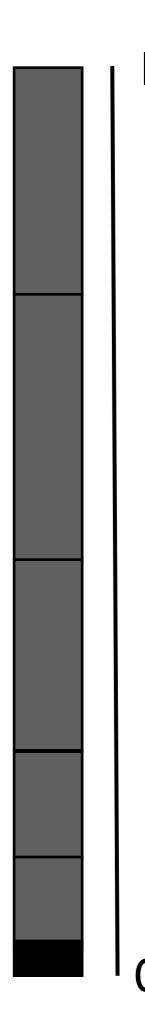




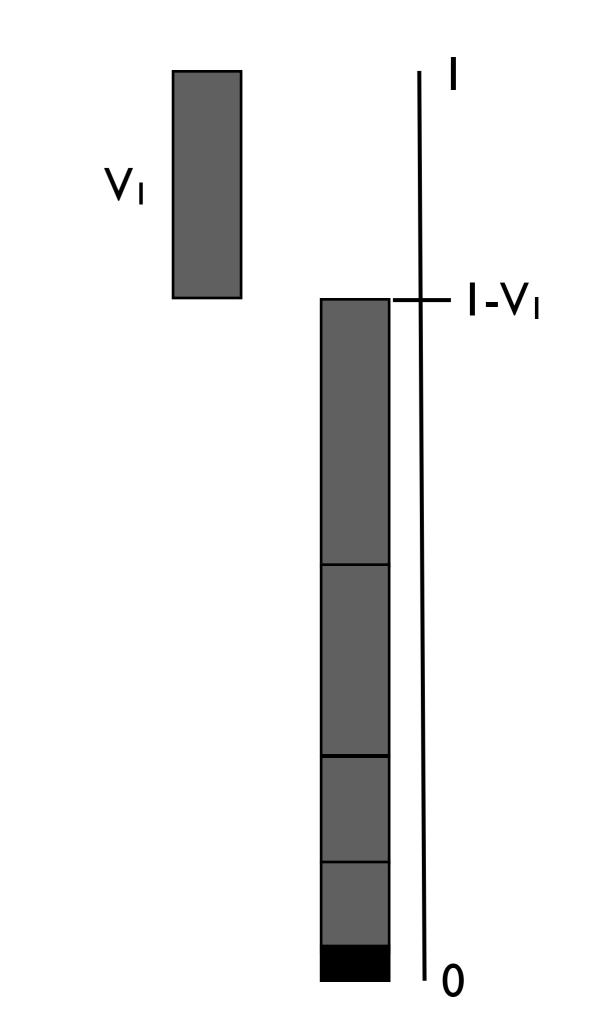


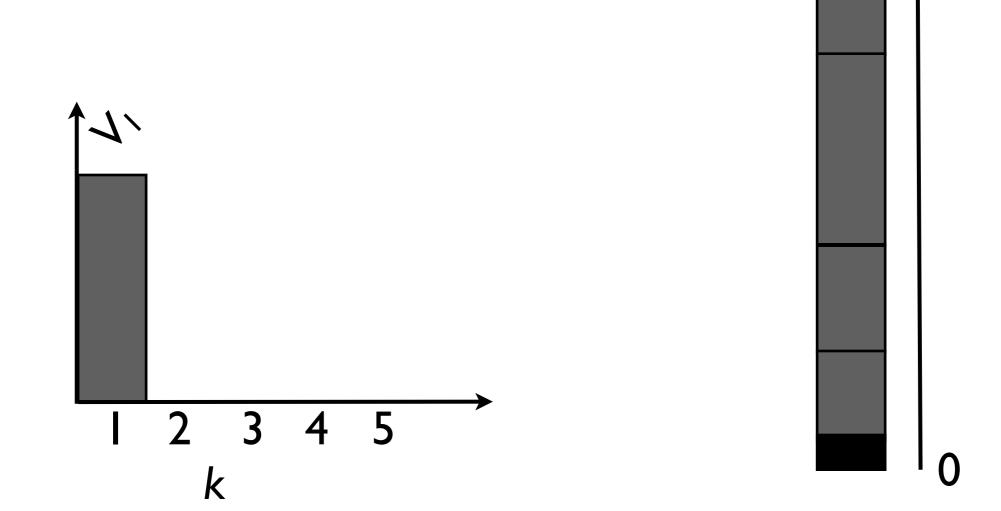
[McCloskey 1965; Patil and Taillie 1977; Sethuraman 1984; Ishwaran, James 2001]



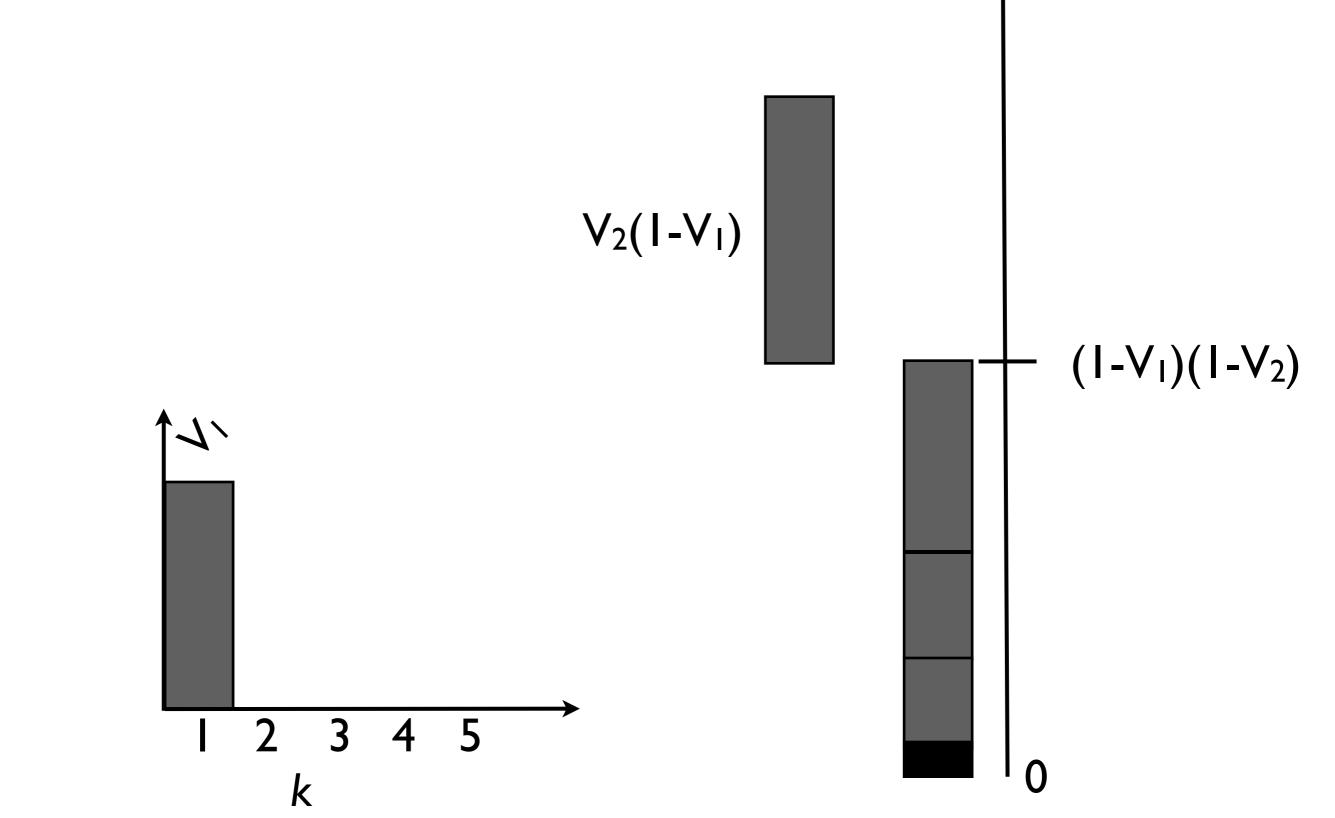


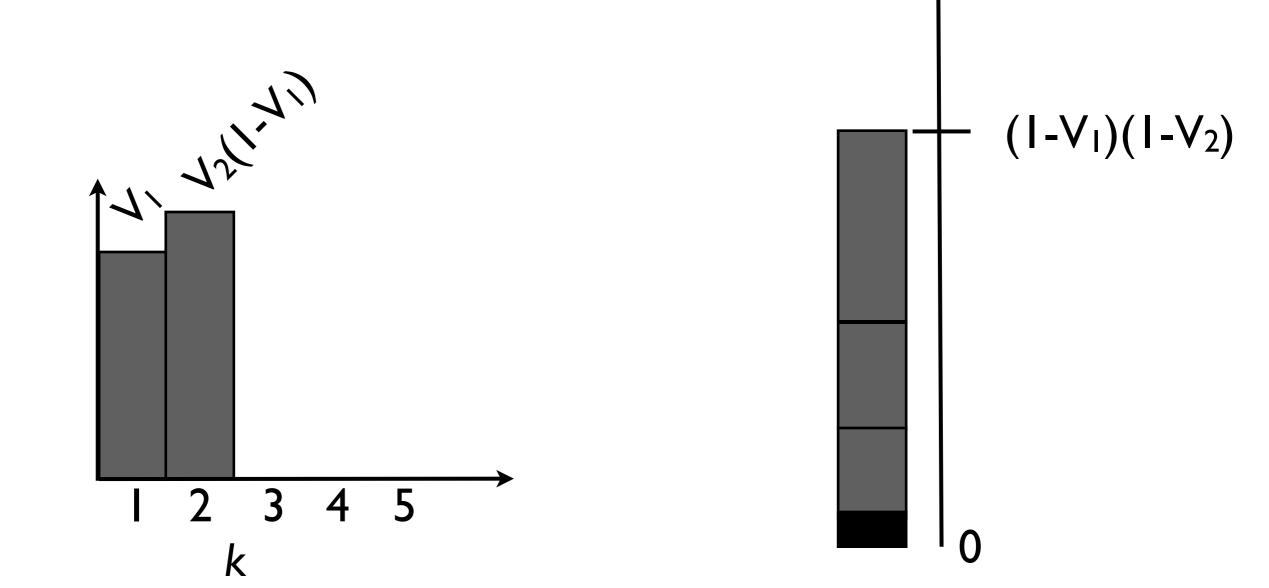
k

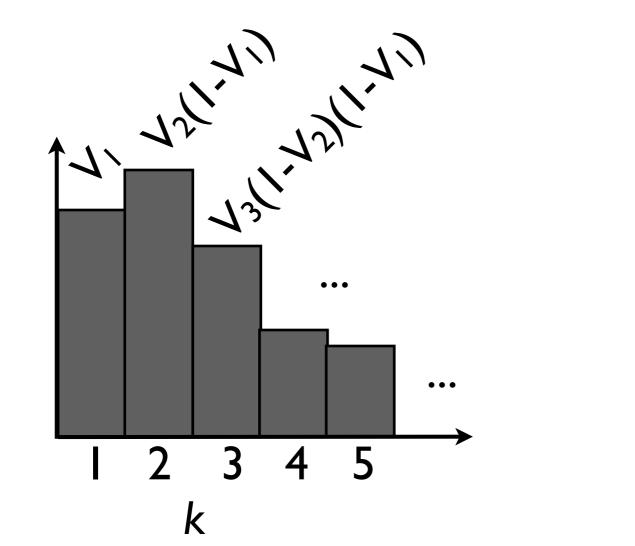




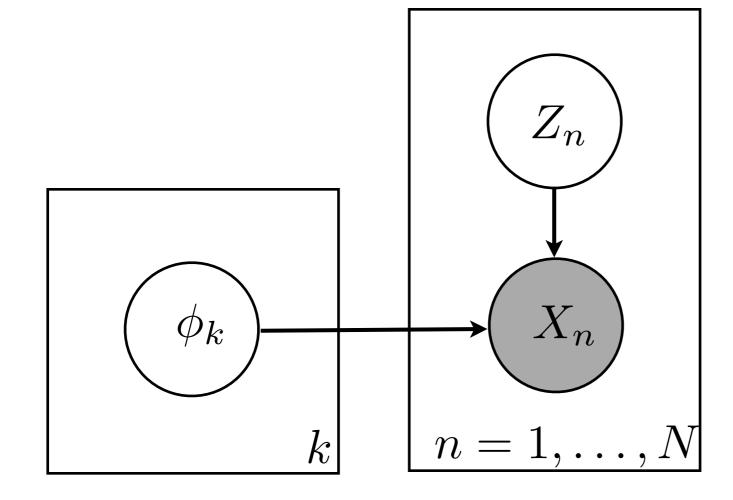
 $I-V_{I}$





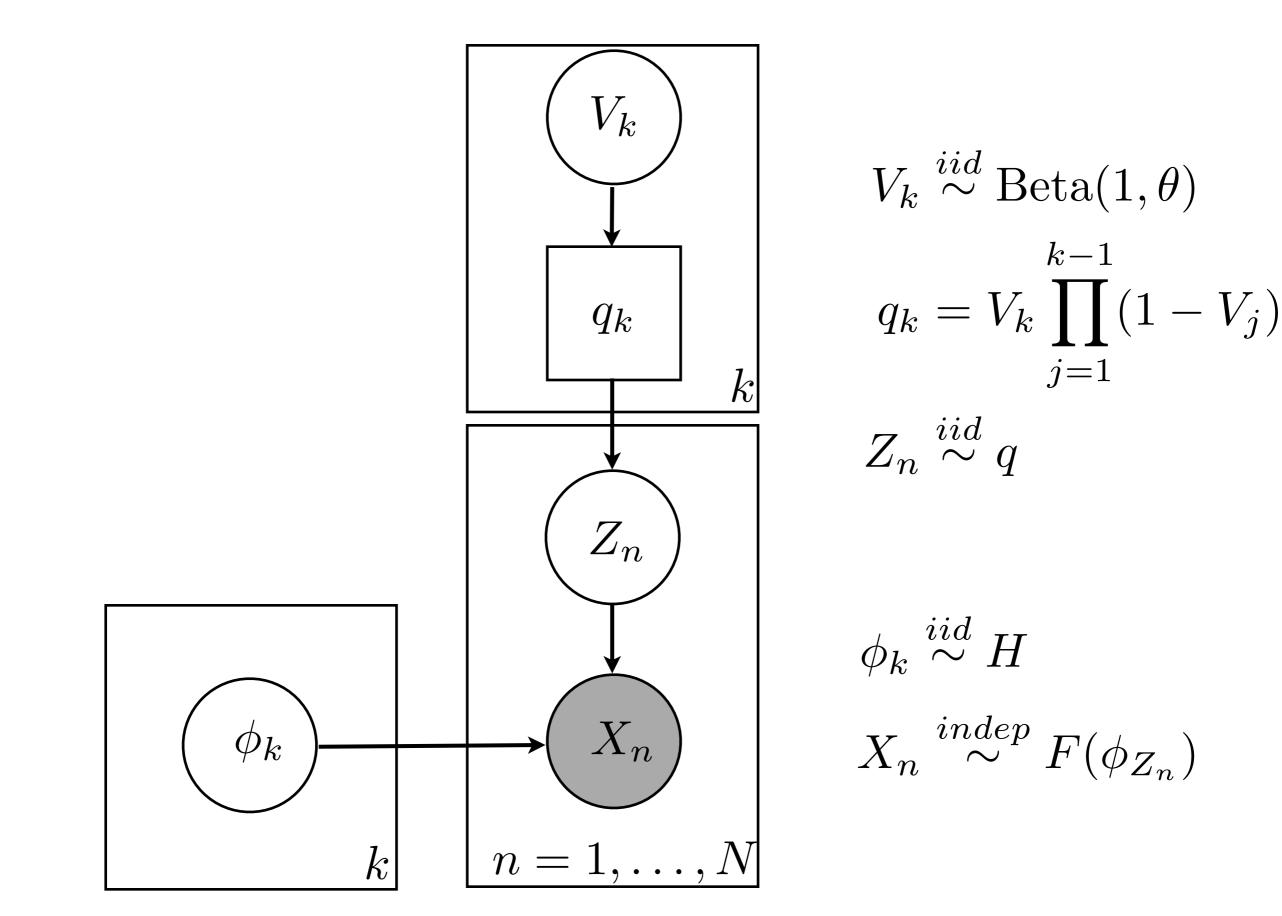


Stick-breaking: part of full gen model



 $\phi_k \stackrel{iid}{\sim} H$ $X_n \overset{indep}{\sim} F(\phi_{Z_n})$

Stick-breaking: part of full gen model



Outline

I. Clusters

Overview

Distribution

- Proportions
 - Senerative model (Example: CRP stick-breaking)
 - ♦ Posterior

• Random probability measure

II. Features

Outline

I. Clusters

Overview

Distribution

• Proportions

Senerative model (Example: CRP stick-breaking)

♦ Posterior

• Random probability measure

II. Features

Why use stick-breaking?

- More general models
- May want to infer the stick lengths

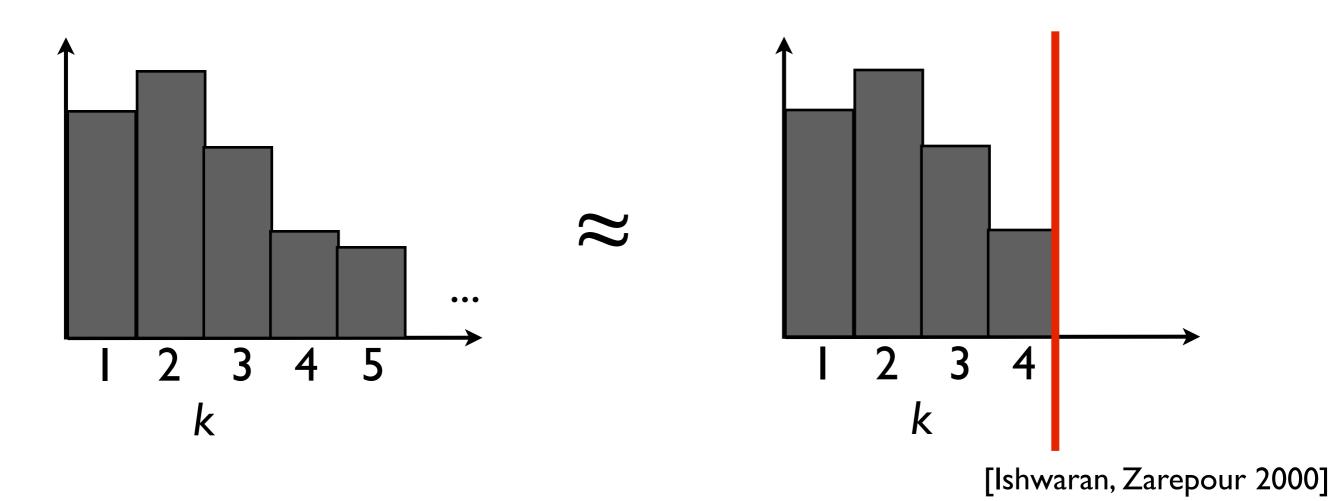
MCMC

MCMC

• Finite approximation

MCMC

• Finite approximation

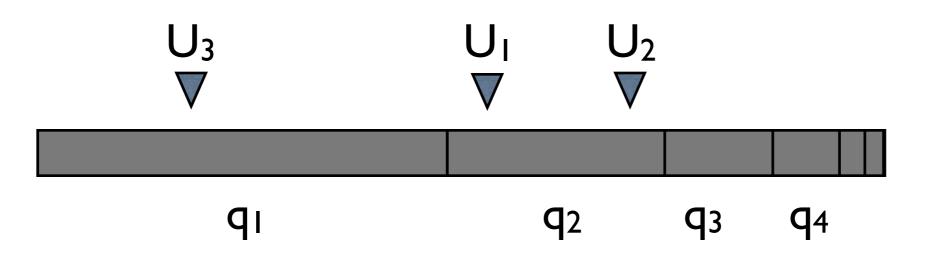


MCMC

- Finite approximation
- Retrospective sampling

MCMC

- Finite approximation
- Retrospective sampling



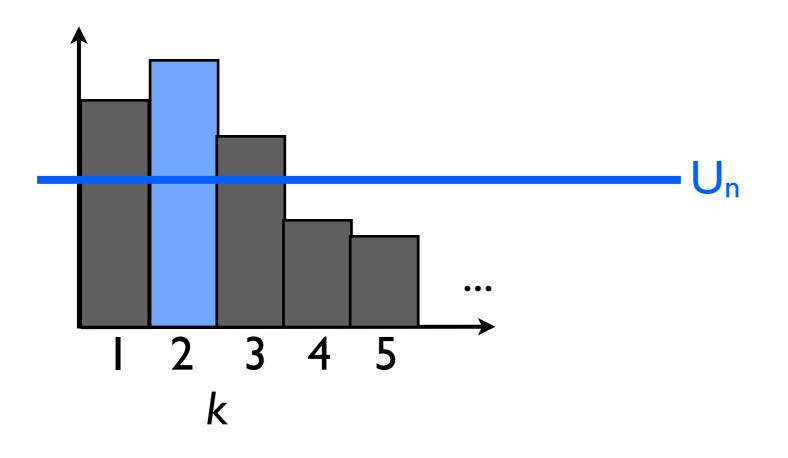
[Papaspiliopoulos, Roberts 2008]

MCMC

- Finite approximation
- Retrospective sampling
- Slice sampling

MCMC

- Finite approximation
- Retrospective sampling
- Slice sampling



[Walker 2007]

MCMC

- Finite approximation
- Retrospective sampling
- Slice sampling

Variational methods

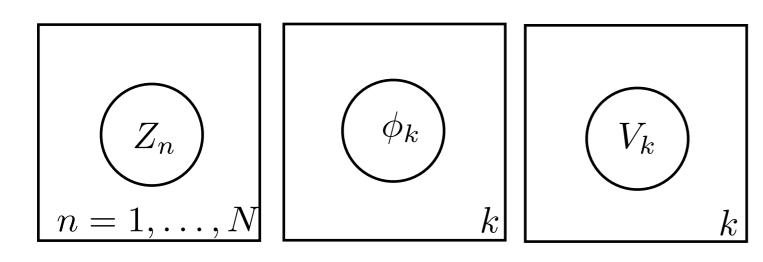
• Mean field

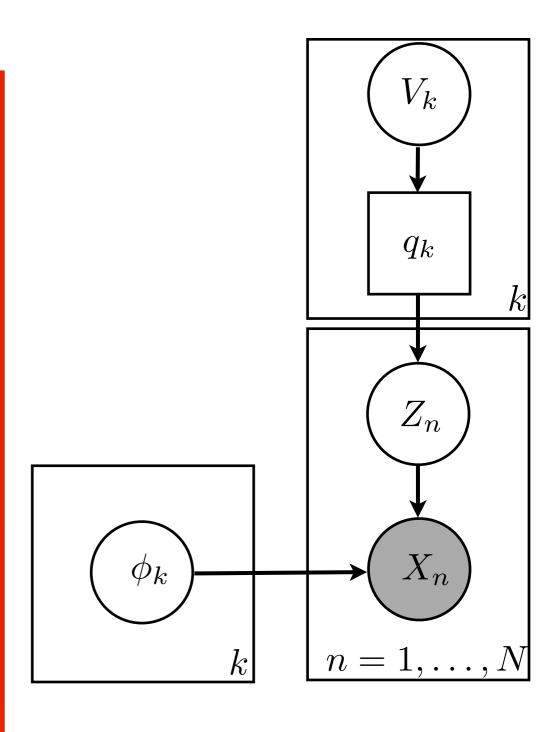
MCMC

- Finite approximation
- Retrospective sampling
- Slice sampling

Variational methods

• Mean field





[Blei, Jordan 2004]

Outline

I. Clusters

Overview

Distribution

• Proportions

Senerative model (Example: CRP stick-breaking)

♦ Posterior

• Random probability measure

II. Features

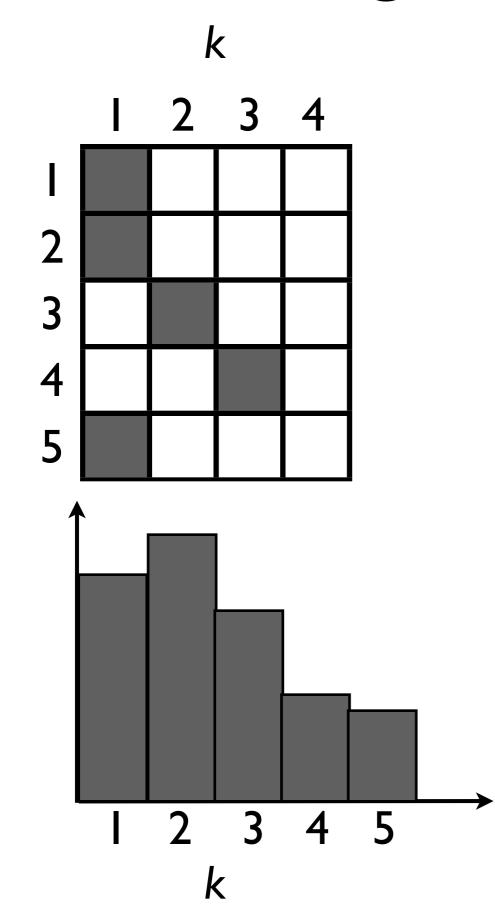
Outline

I. Clusters

- Overview
- Distribution
- Proportions
 - ♦ Generative model
 - ♦ Posterior
- Random probability measure

II. Features

Stick-breaking: extensions



Connections

Exchangeable clustering

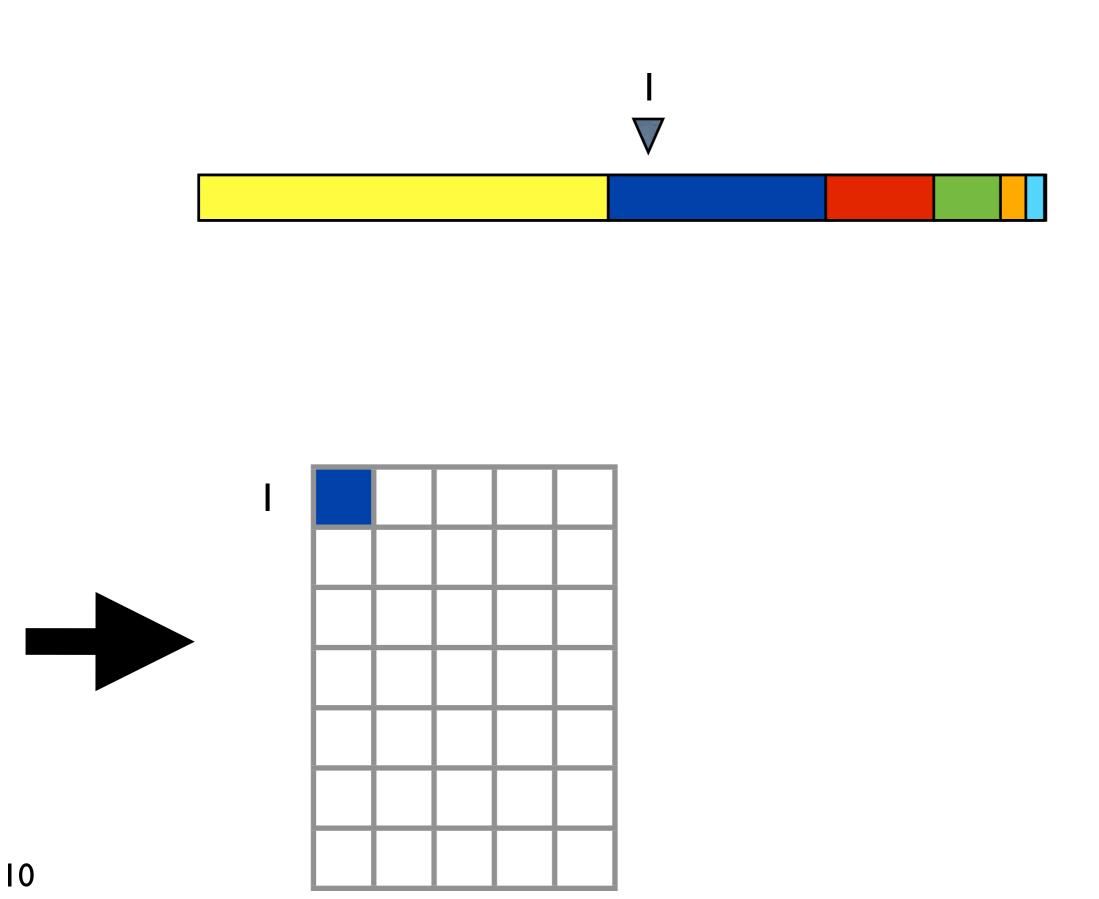
?

Chinese restaurant

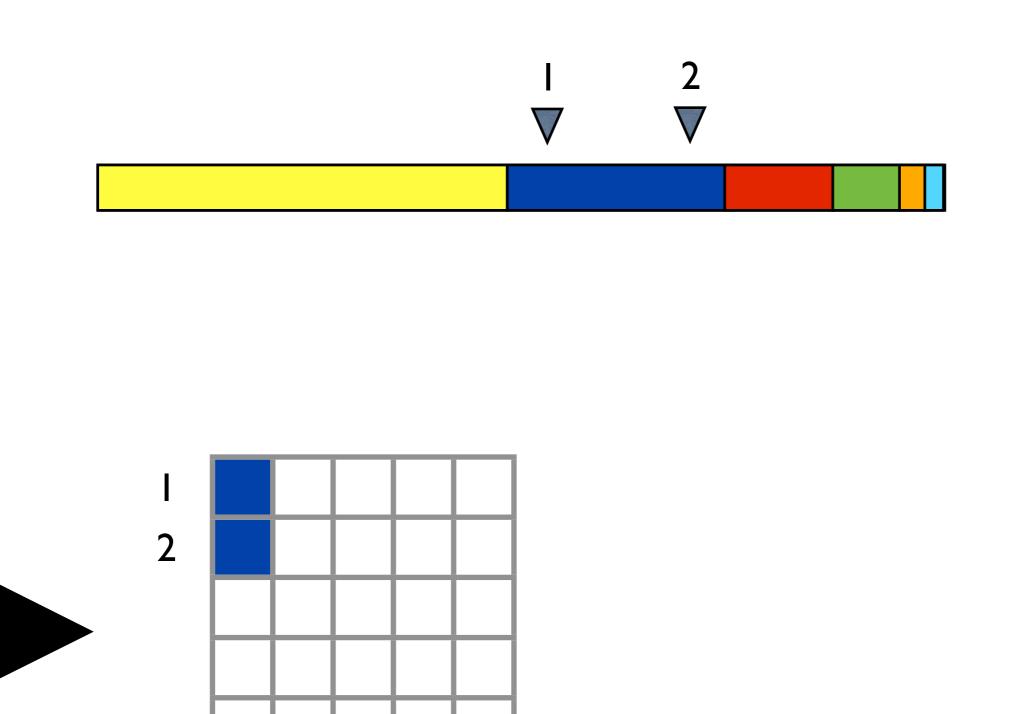
EPPF CRP

CRP stick-breaking

[Kingman 1978]

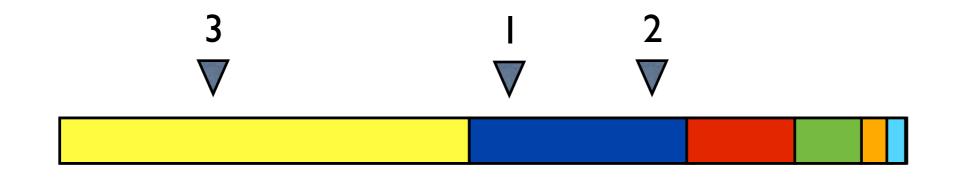


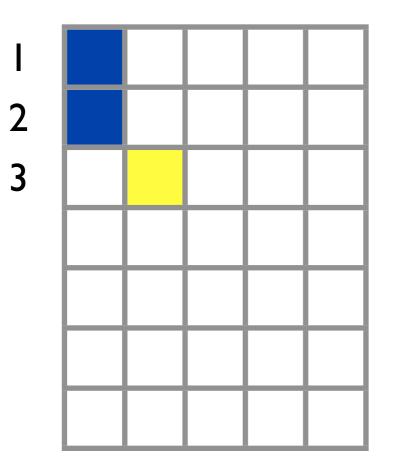
[Kingman 1978]



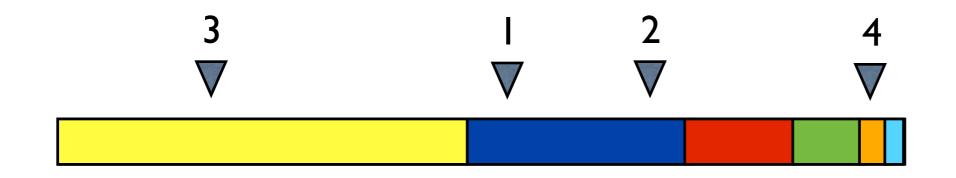
[Kingman 1978]

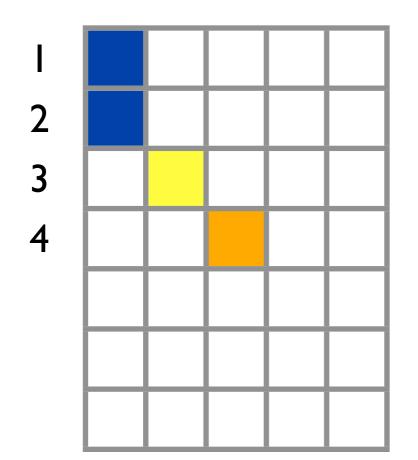
10





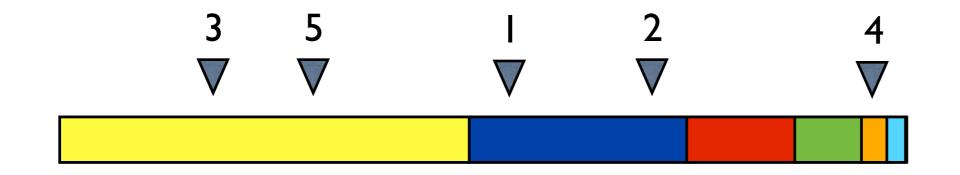
[Kingman 1978]

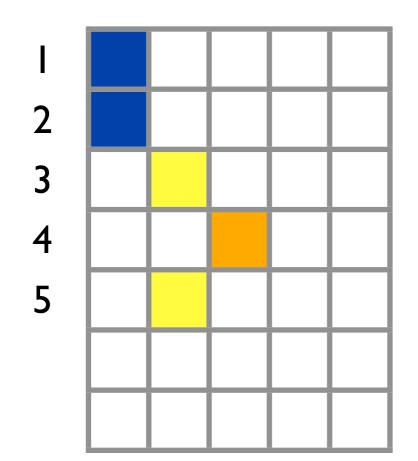




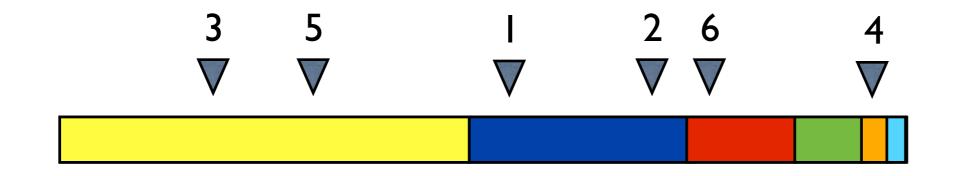
[Kingman 1978]

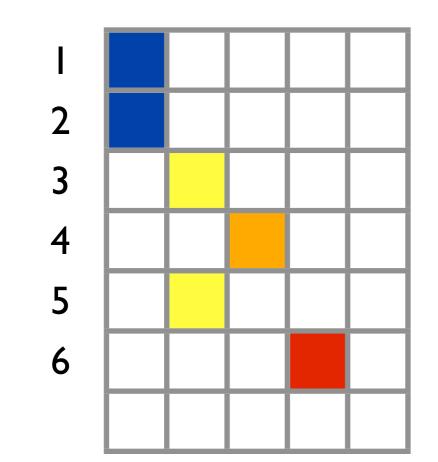
10





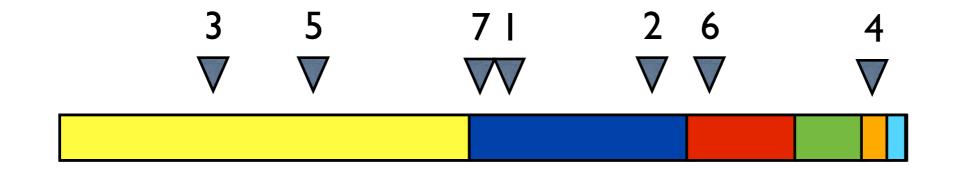
[Kingman 1978]

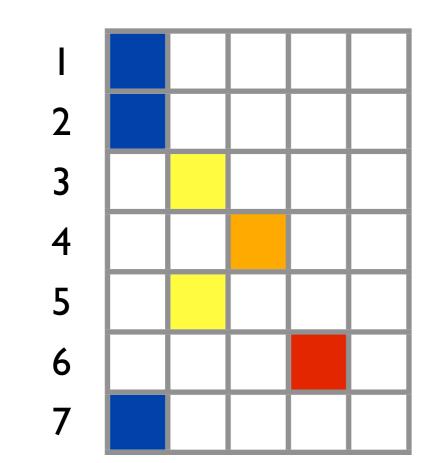




[Kingman 1978]

10





[Kingman 1978]

Connections

Exchangeable clustering

Chinese restaurant

EPPF CRP

Kingman paintbox

CRP stick-breaking

Outline

I. Clusters

- Overview
- Distribution
- Proportions
 - ♦ Generative model
 - ♦ Posterior
- Random probability measure

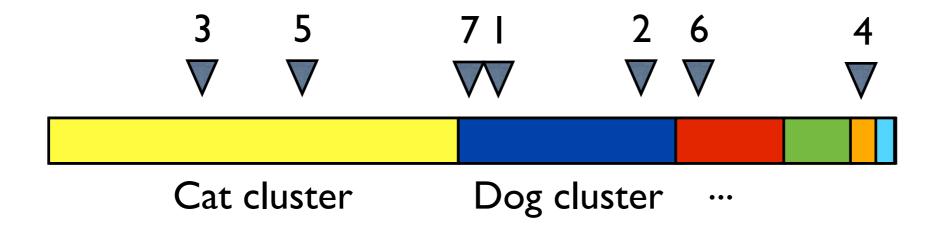
II. Features

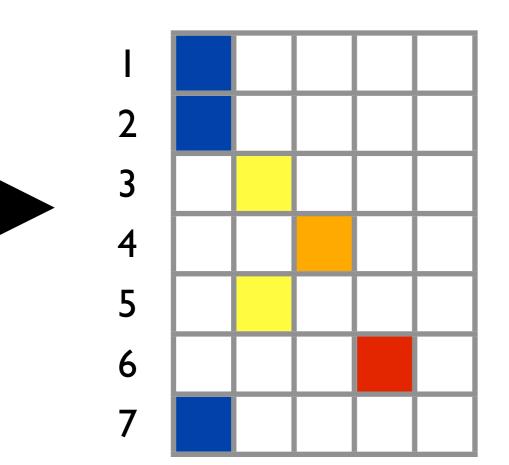
Outline

I. Clusters

- Overview
- Distribution
- Proportions
- Random probability measure

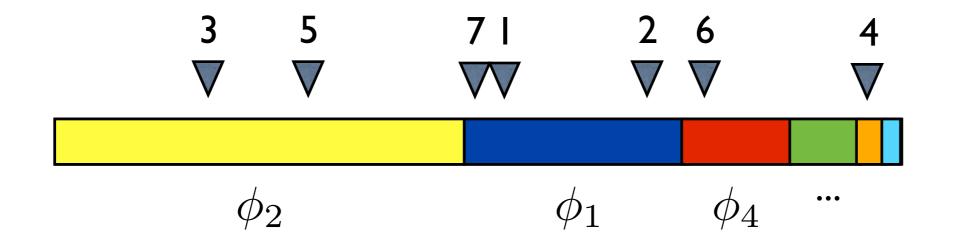
II. Features

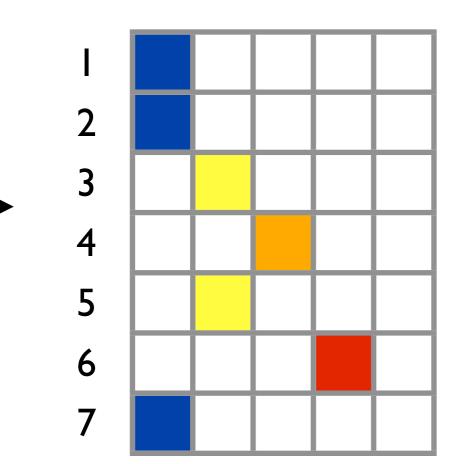




10

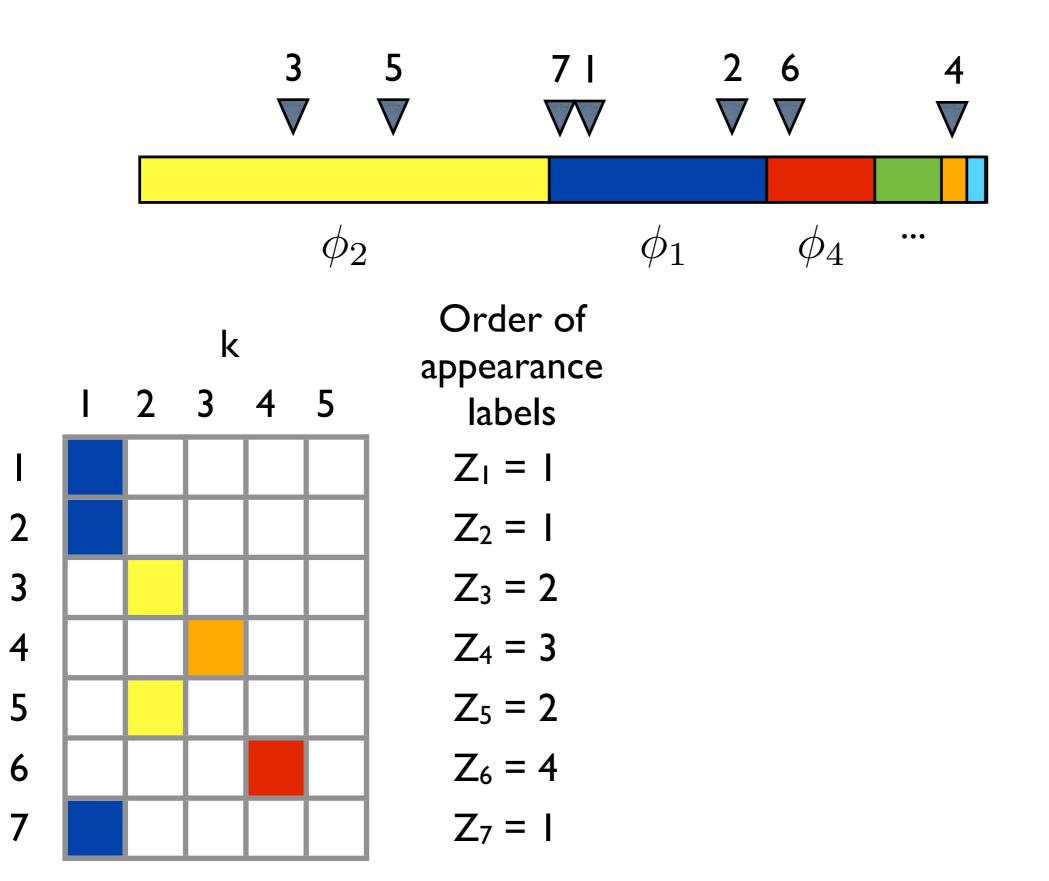
[Kingman 1978]

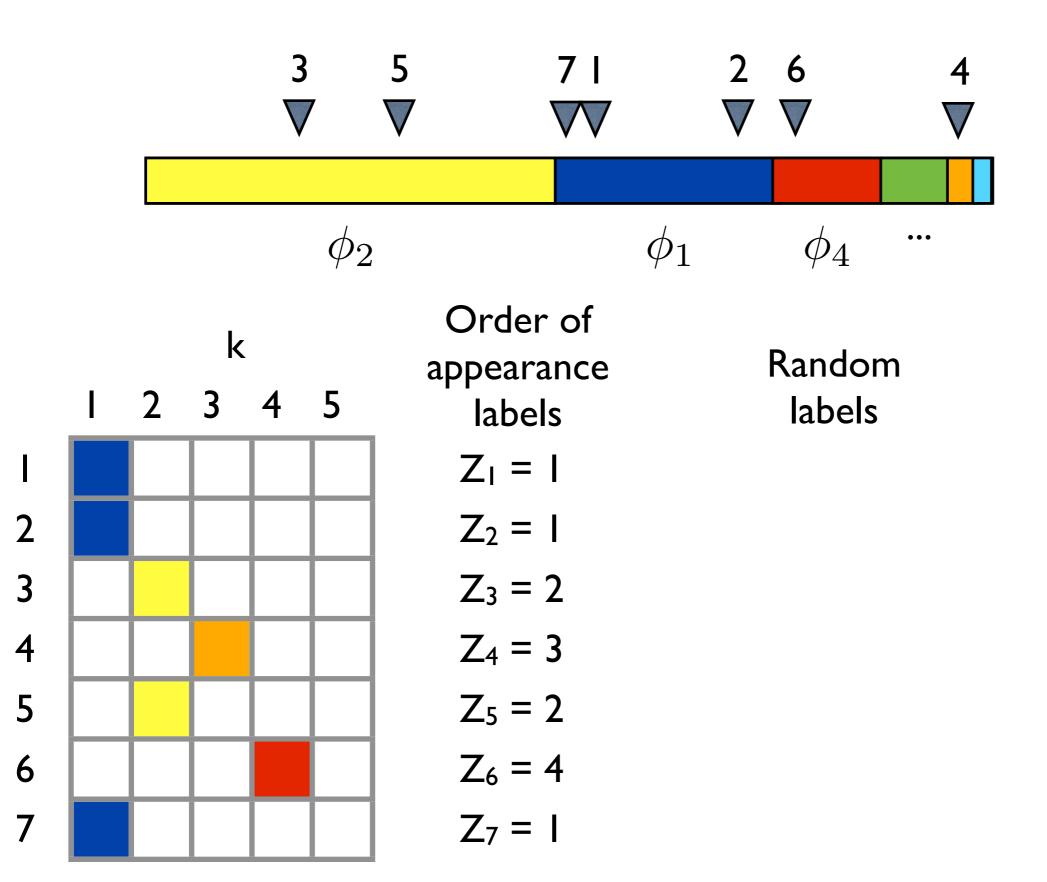


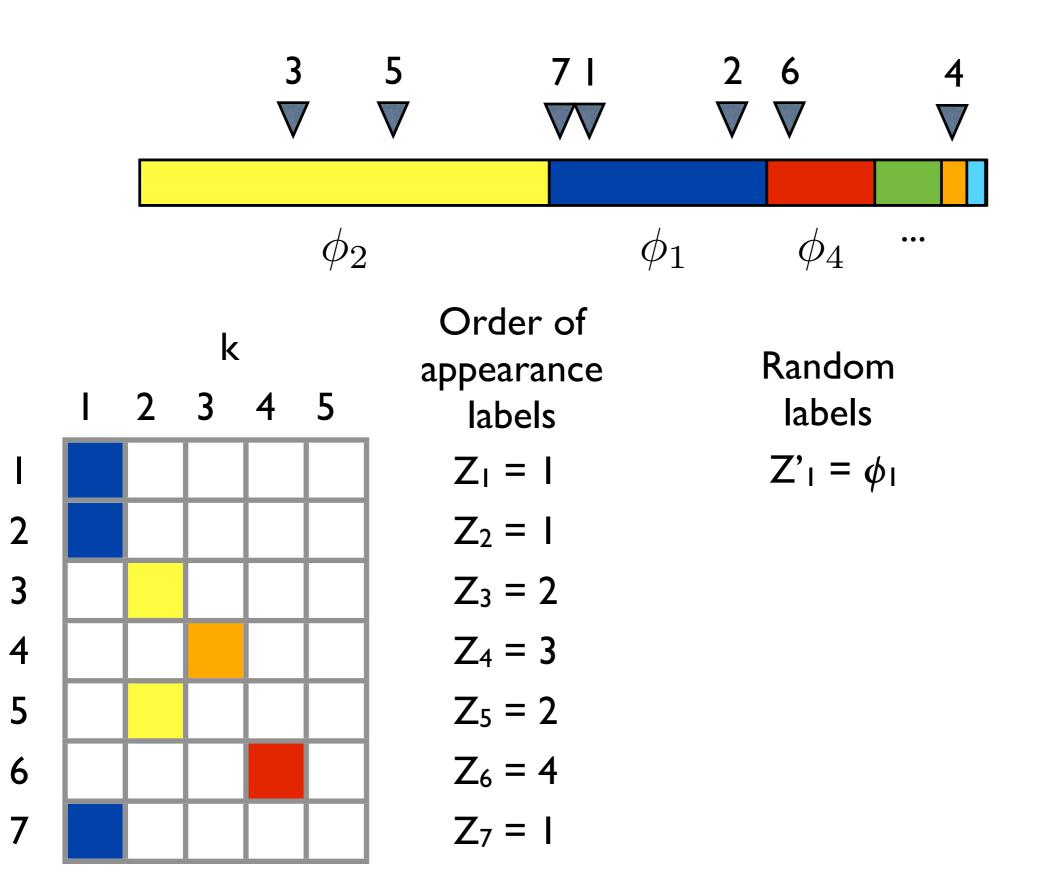


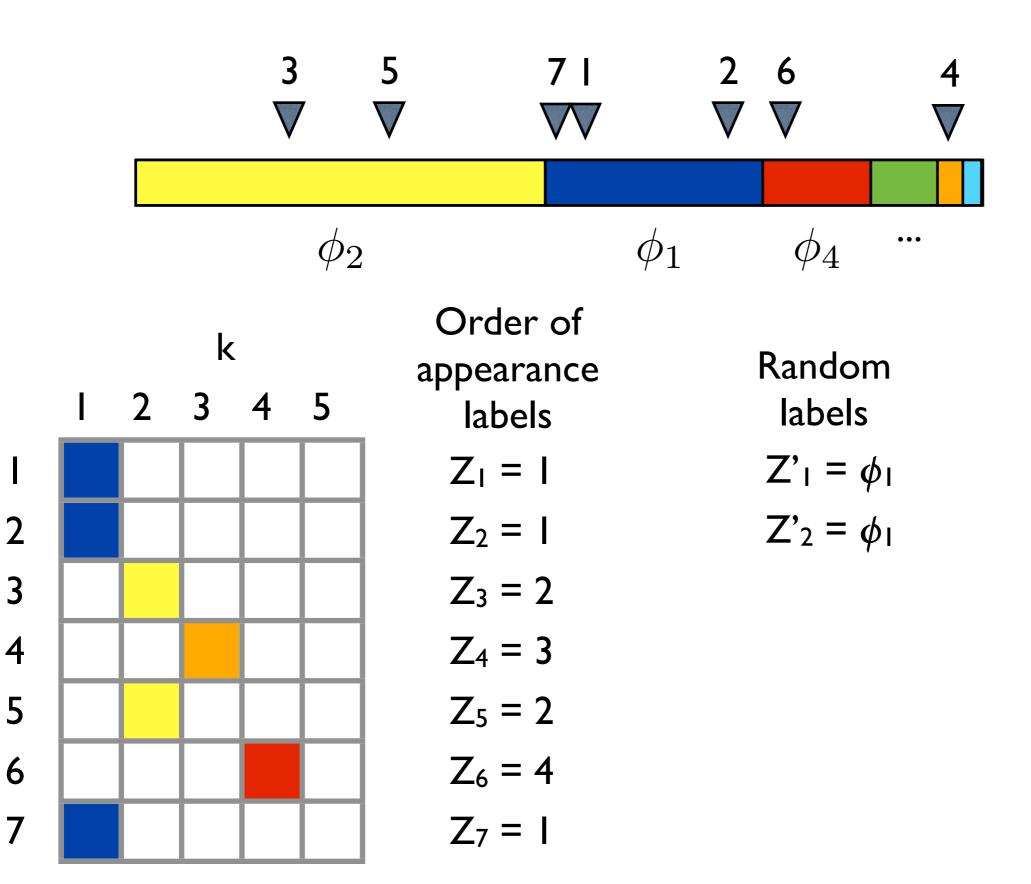
[Kingman 1978]

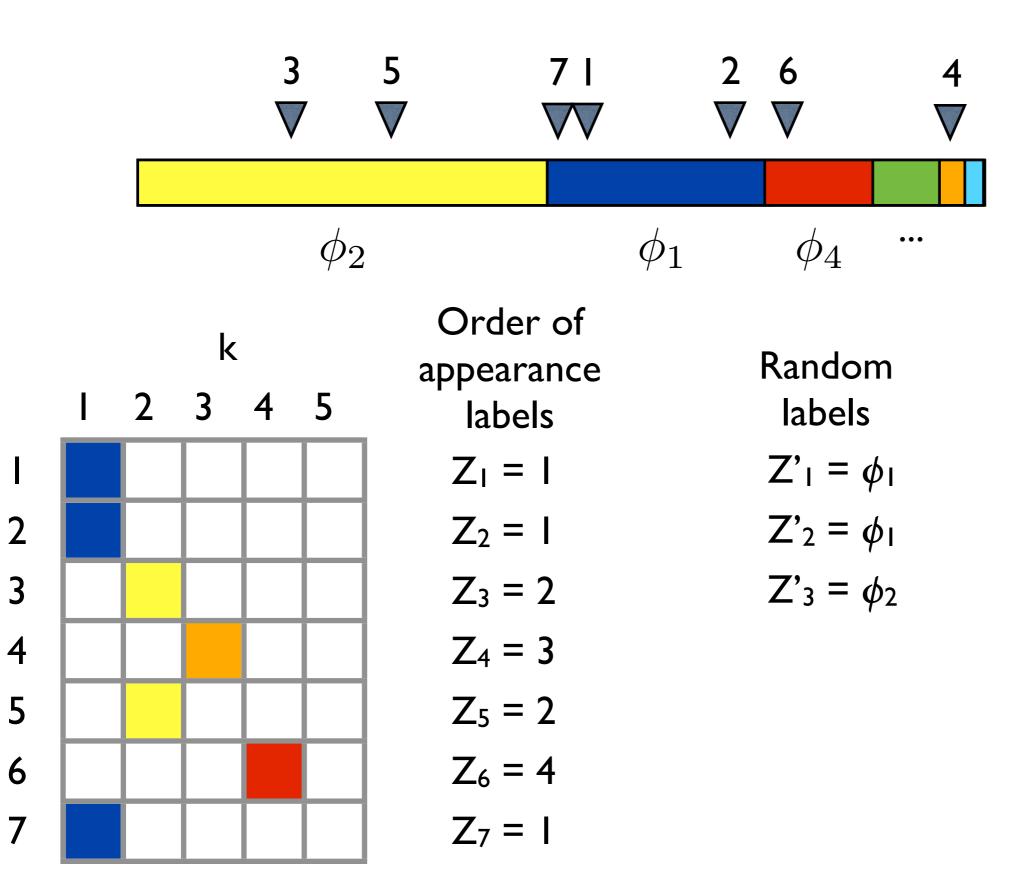
10

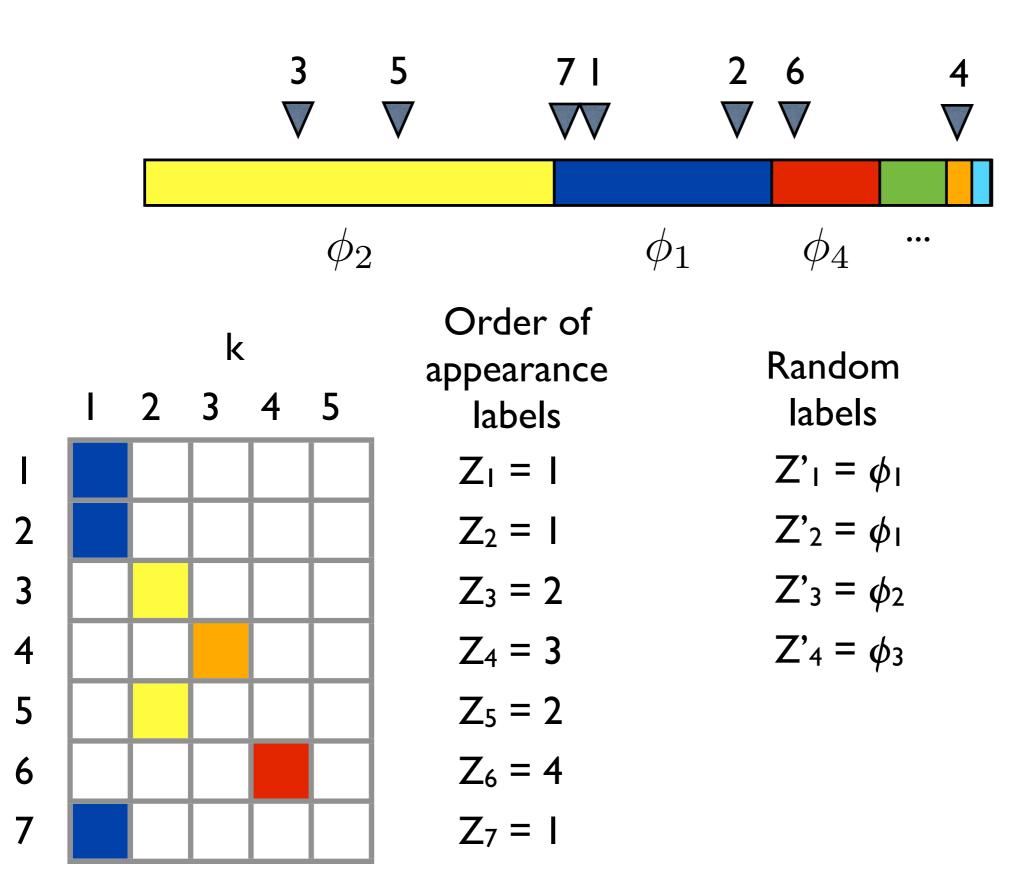


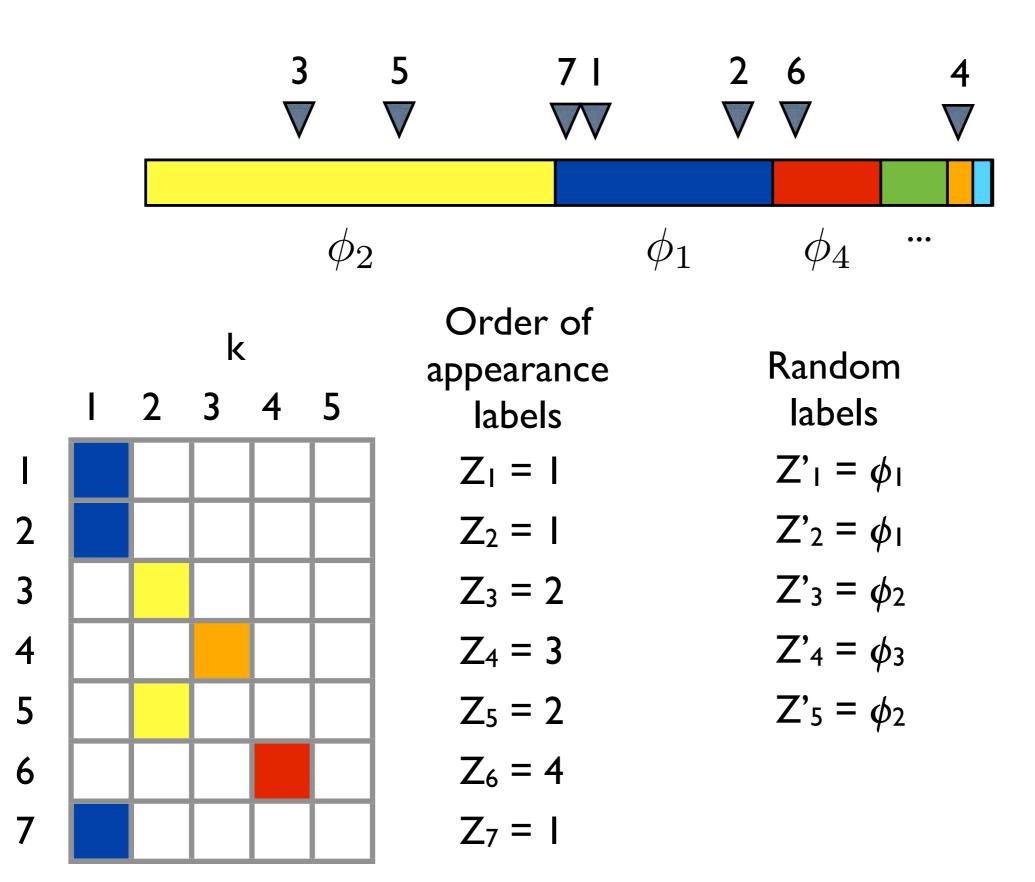


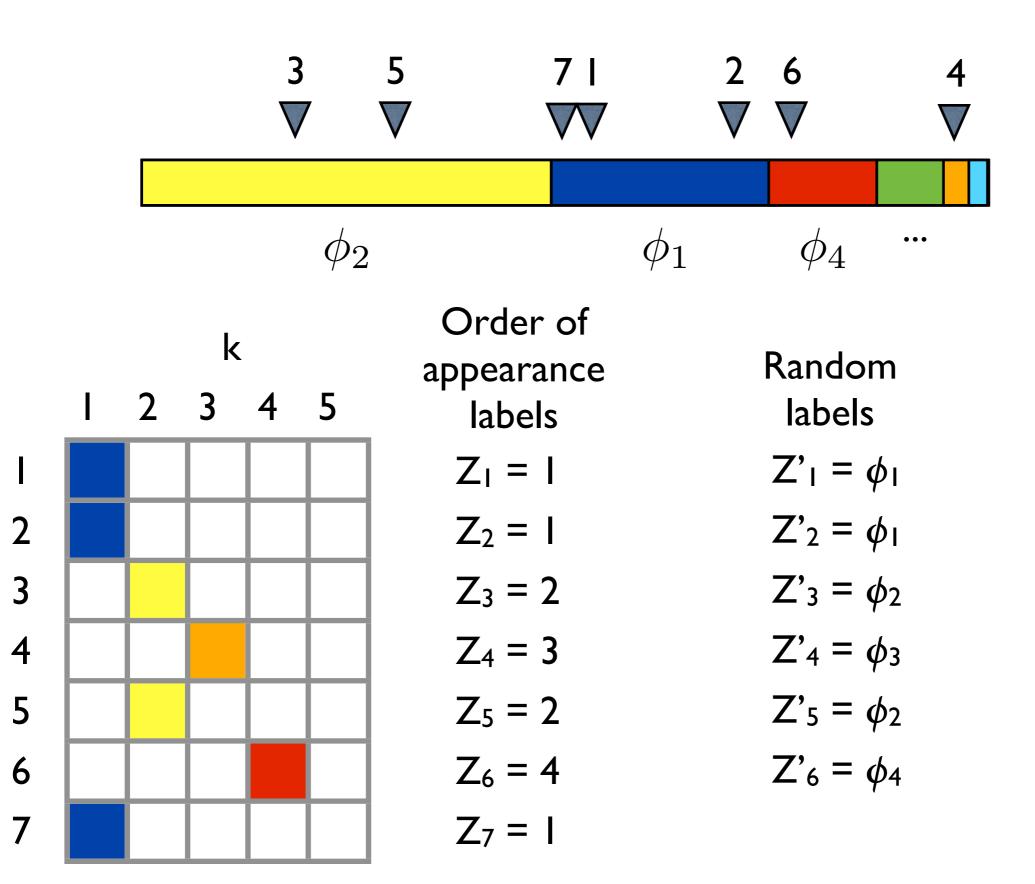


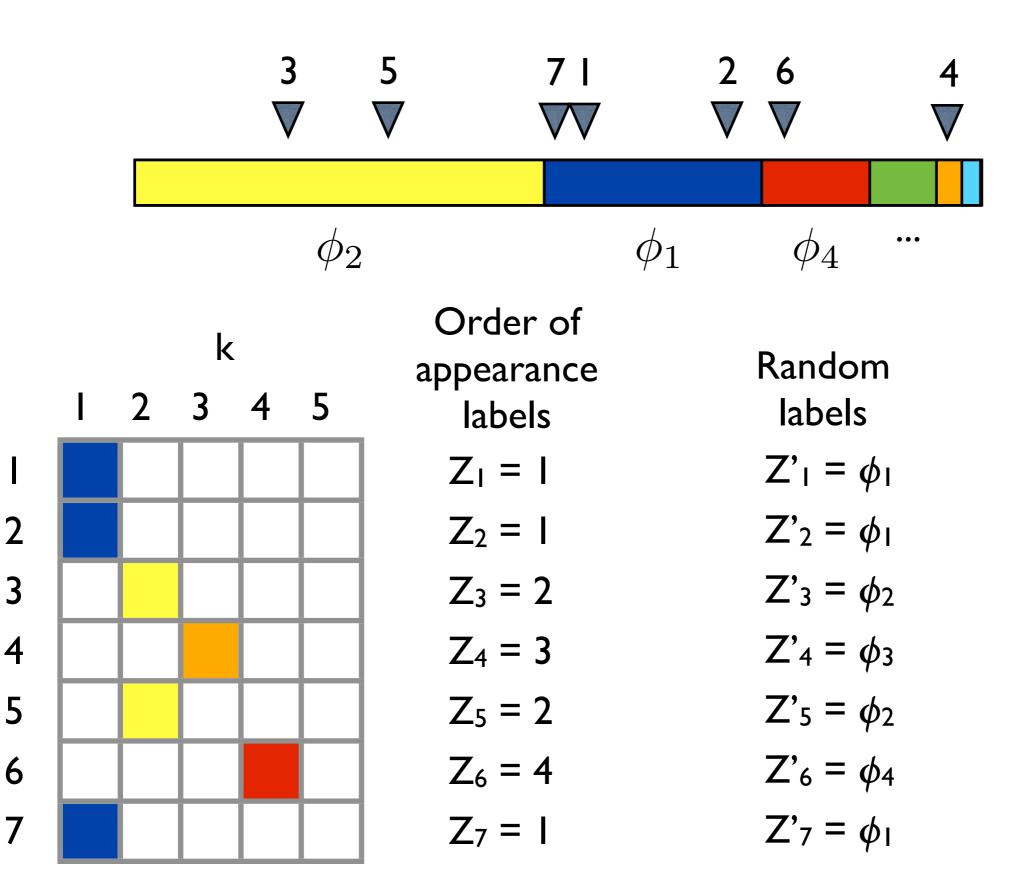


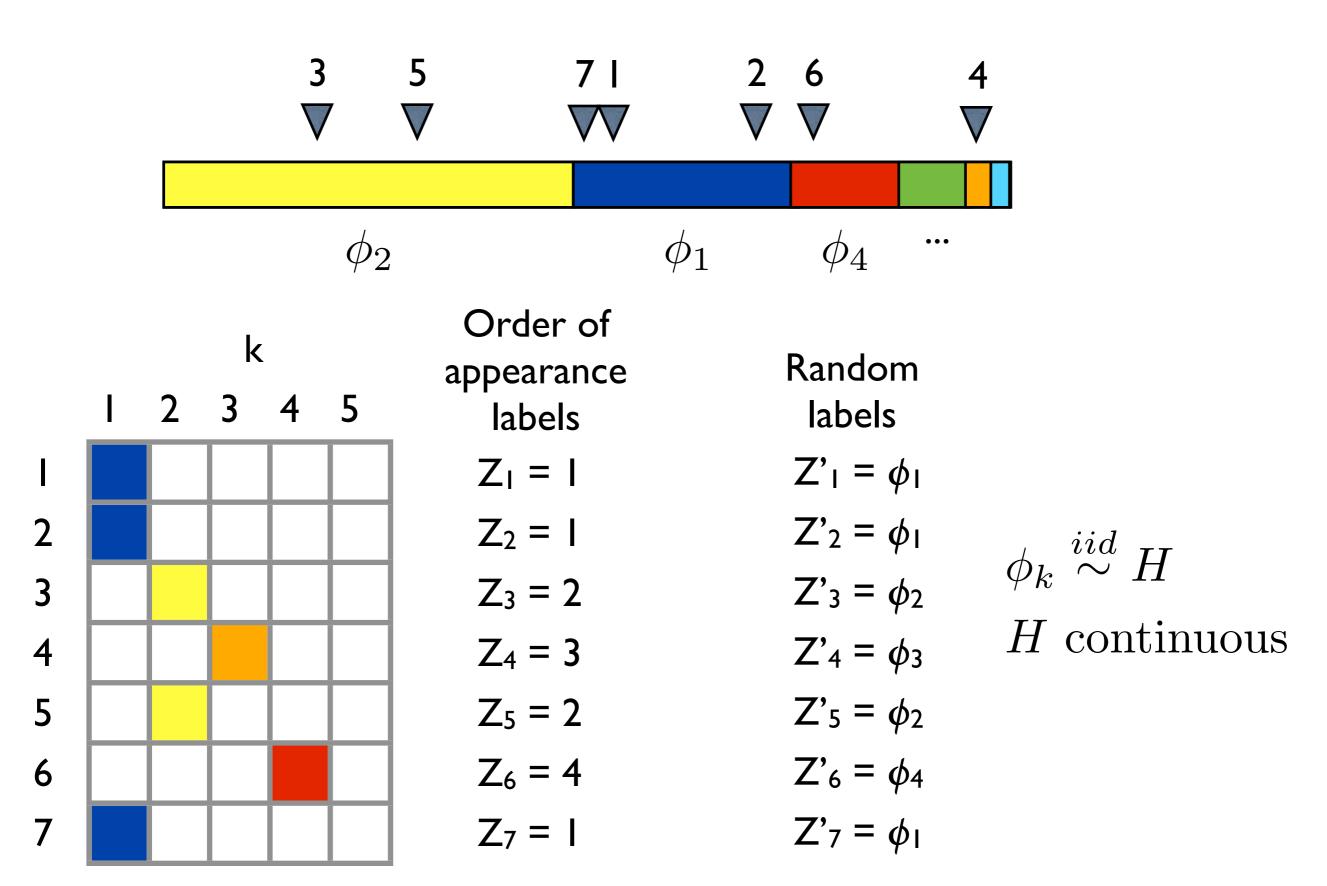






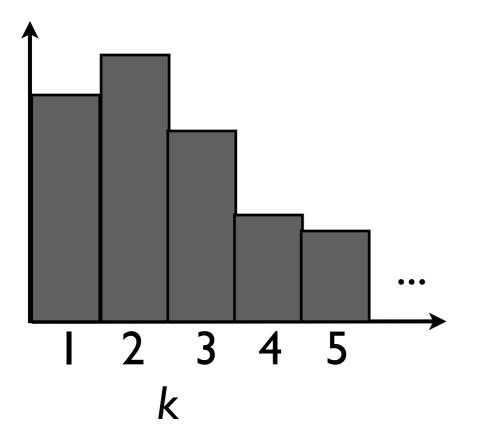


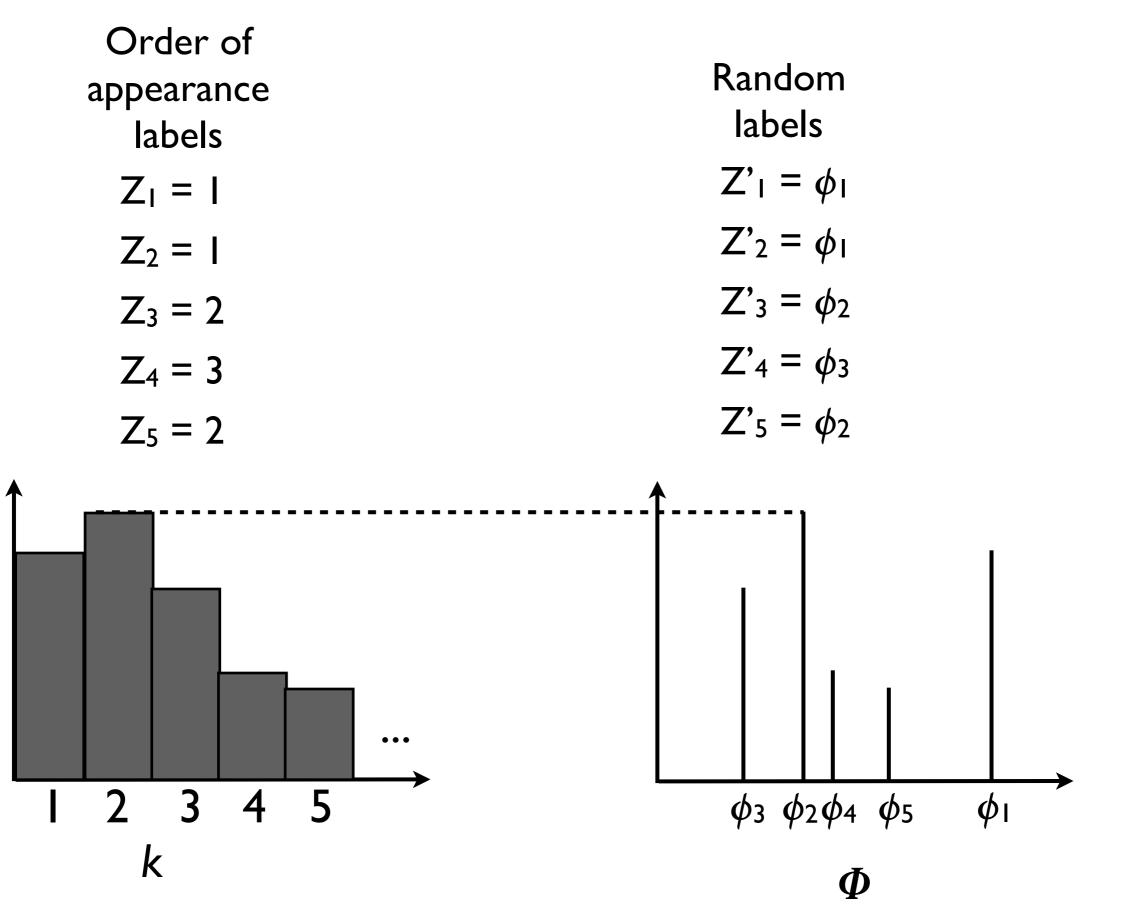


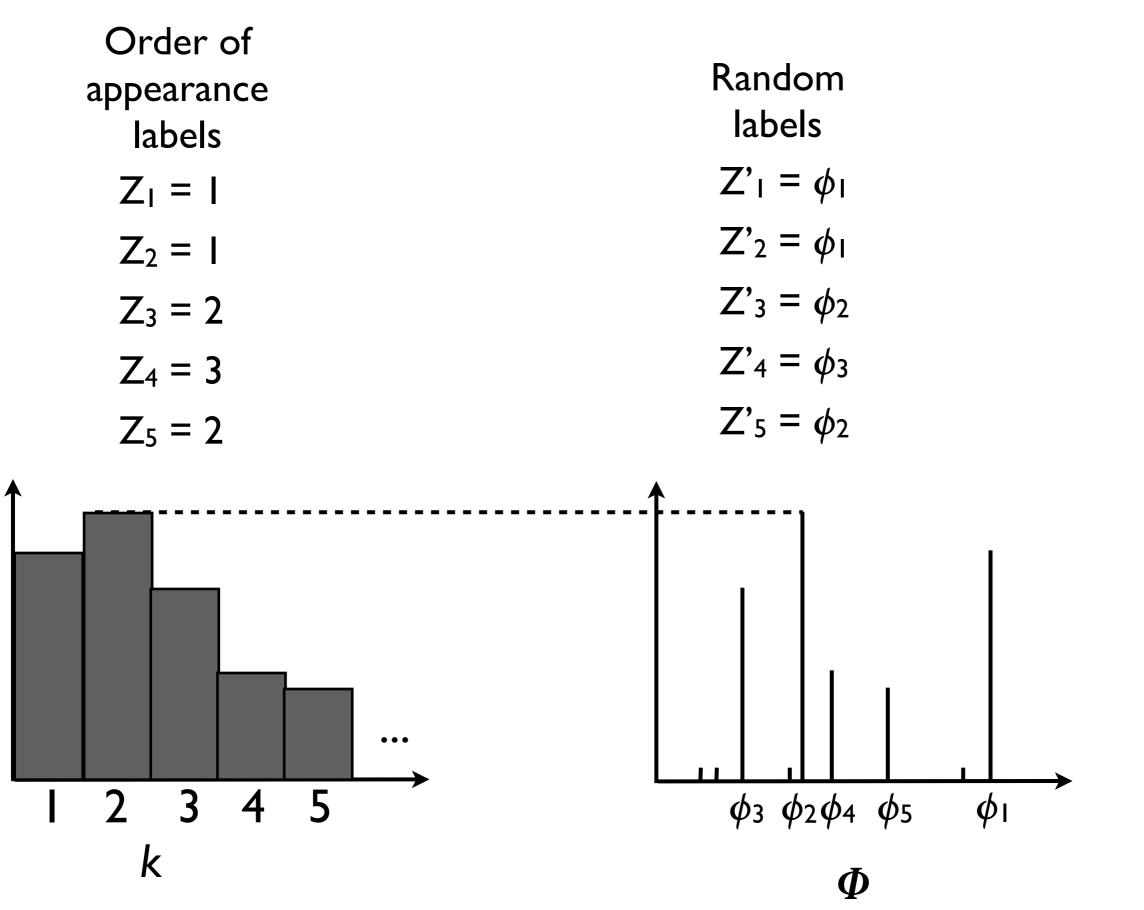


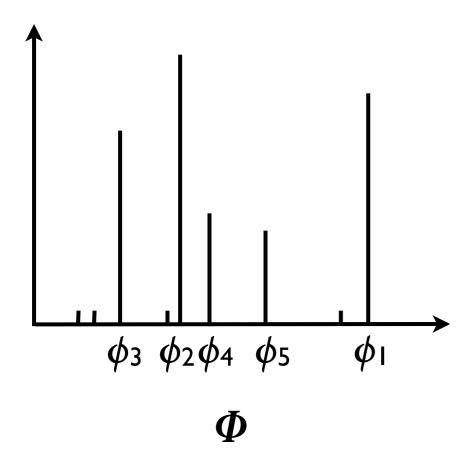
Order of	
appearance	Random
labels	labels
$Z_I = I$	$Z'_{I} = \phi_{I}$
$Z_2 = I$	$Z'_2 = \phi_1$
$Z_3 = 2$	$Z'_3 = \phi_2$
$Z_4 = 3$	$Z'_4 = \phi_3$
$Z_5 = 2$	$Z'_5 = \phi_2$

$$Z_5 = 2$$

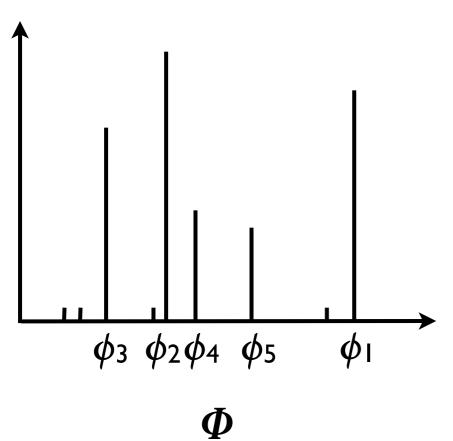




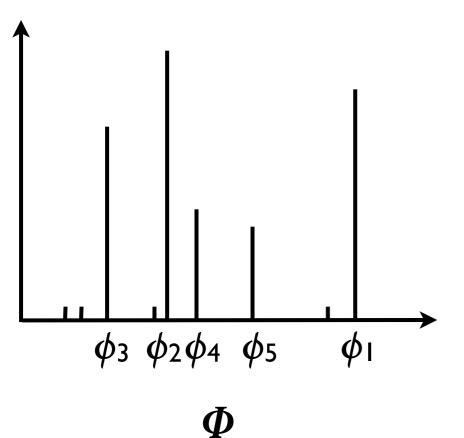




• Def: Random measure with total mass one

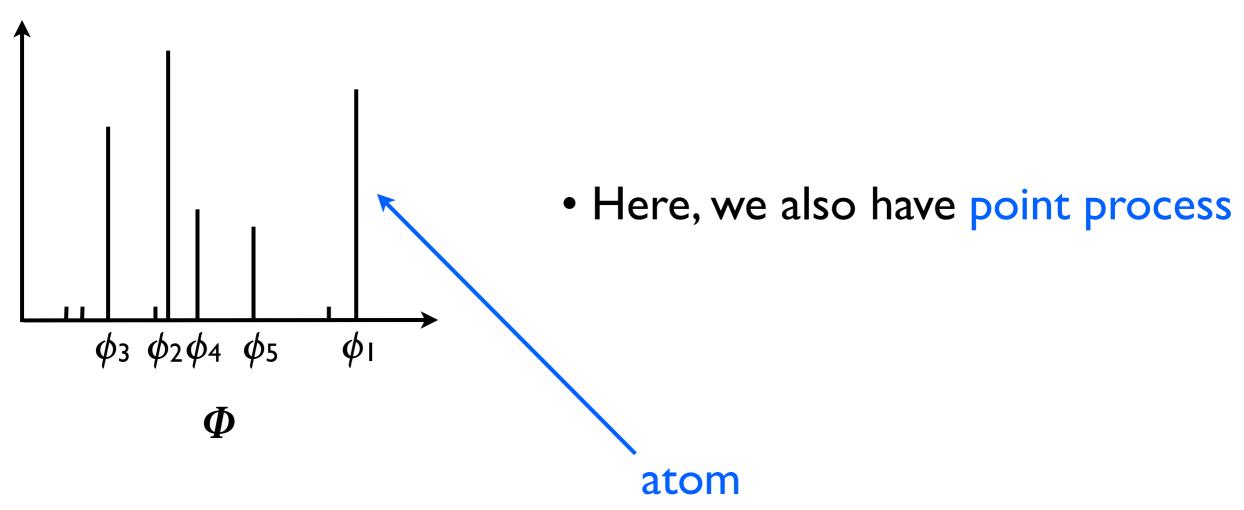


• Def: Random measure with total mass one

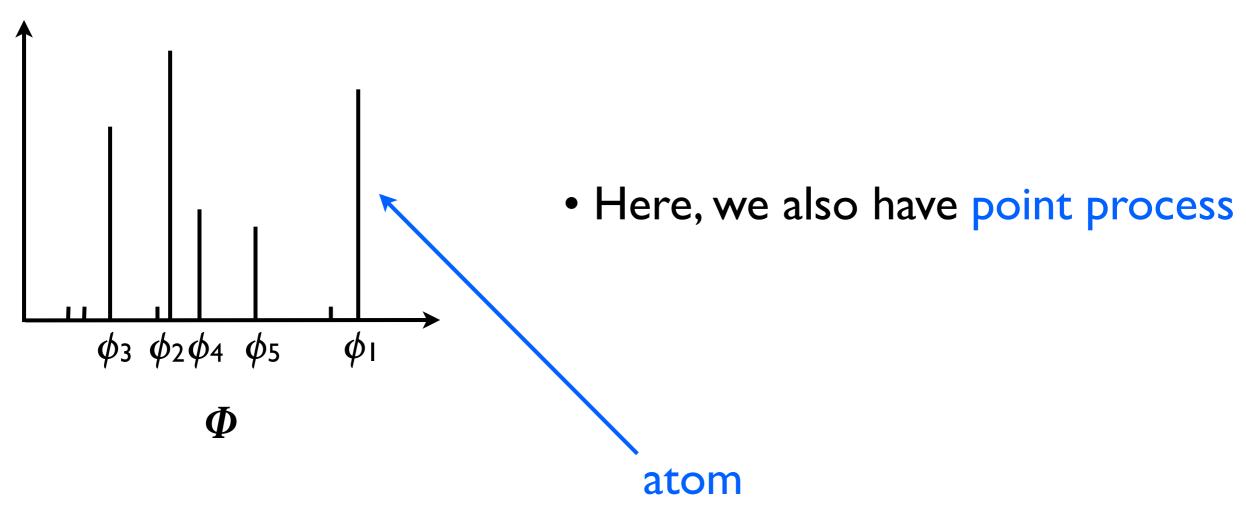


• Here, we also have point process

• Def: Random measure with total mass one



• Def: Random measure with total mass one



Example: Dirichlet process

• The random probability measure with CRP stick-breaking atom sizes

Clusters: augmentation

random partition & EPPF

random partition & EPPF CRP

Clusters: augmentation $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

random partition & EPPF CRP

Clusters: augmentation $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

random partition & EPPF CRP (continuous-valued) random cluster labels

Clusters: augmentation $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$

random partition & EPPF CRP (continuous-valued) random cluster labels CRP with cluster means

$$\pi_9 = \{\{9, 2, 7, 1\}, \\\{8, 4, 6\}, \{5, 3\}\}\$$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$

random partition & EPPF CRP (continuous-valued) random cluster labels CRP with cluster means

$$\pi_9 = \{\{9, 2, 7, 1\}, \\\{8, 4, 6\}, \{5, 3\}\}\$$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$

random partition & EPPF CRP (continuous-valued) random cluster labels CRP with cluster means cluster proportions/ Kingman paintbox

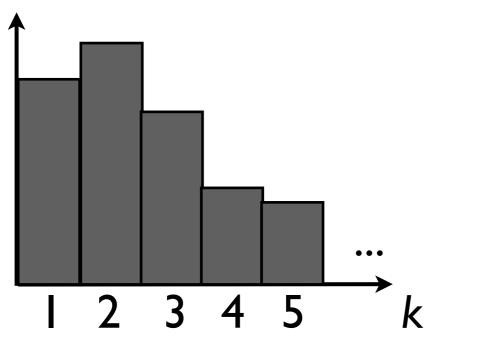
$$\pi_9 = \{\{9, 2, 7, 1\}, \\\{8, 4, 6\}, \{5, 3\}\}\$$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$

random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking

$$\pi_9 = \{\{9, 2, 7, 1\}, \\\{8, 4, 6\}, \{5, 3\}\}$$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$

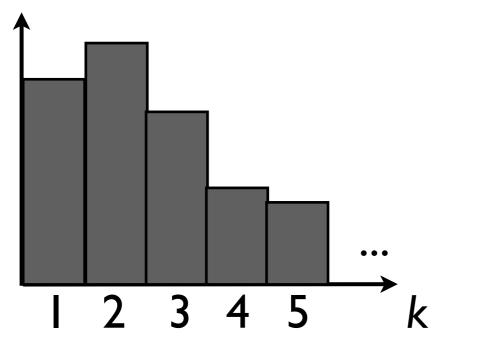


random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking

$$\pi_9 = \{\{9, 2, 7, 1\},\$$

 $\{8, 4, 6\}, \{5, 3\}\}$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$



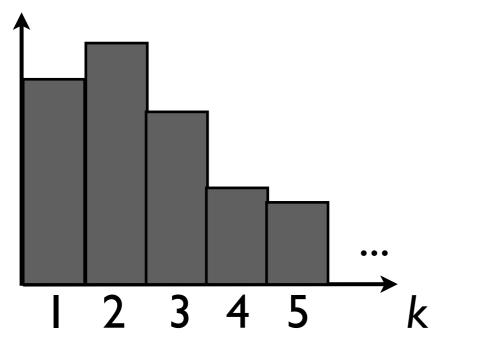
random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking

random, discrete probability measure

$$\pi_9 = \{\{9, 2, 7, 1\},\$$

 $\{8, 4, 6\}, \{5, 3\}\}$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$

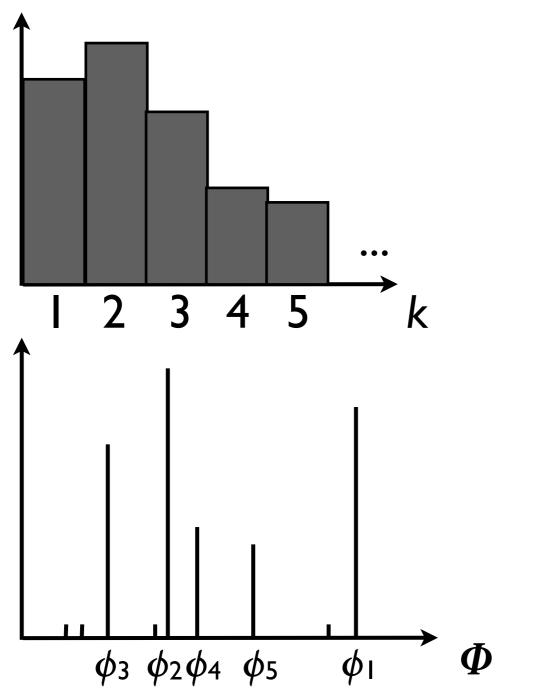


random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking

$$\pi_9 = \{\{9, 2, 7, 1\},\$$

 $\{8, 4, 6\}, \{5, 3\}\}$

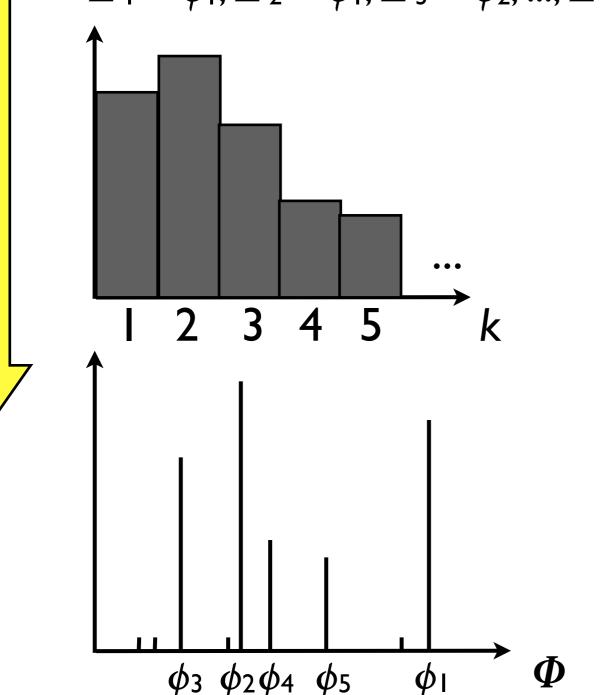
$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1$$



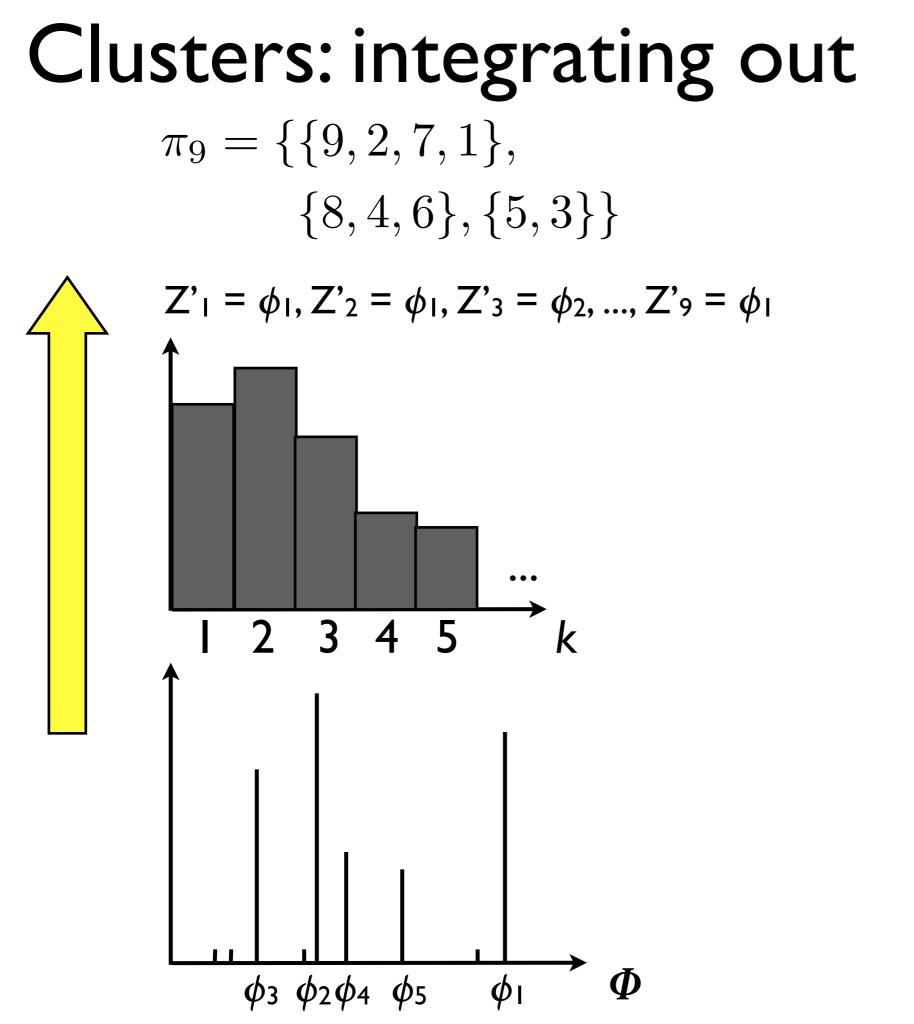
random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking

$$\pi_9 = \{\{9, 2, 7, 1\}, \\\{8, 4, 6\}, \{5, 3\}\}\$$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi$$



random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking



random partition & EPPF CRP (continuous-valued) random cluster labels **CRP** with cluster means cluster proportions/ Kingman paintbox **CRP** stickbreaking

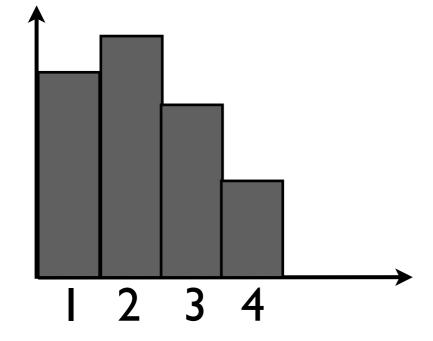
Why the CRP?

Finite, fixed number of clusters

I 2 3 4

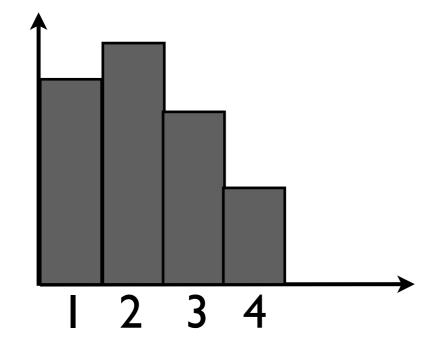
Why the CRP?

Finite, fixed number of clusters



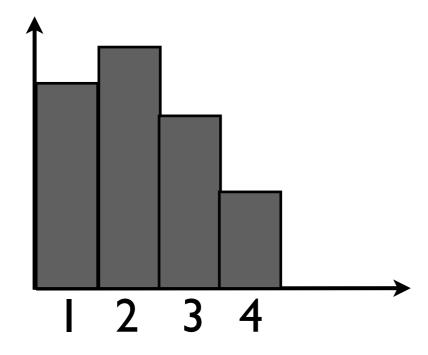
Why the CRP?

Finite, fixed number of clusters



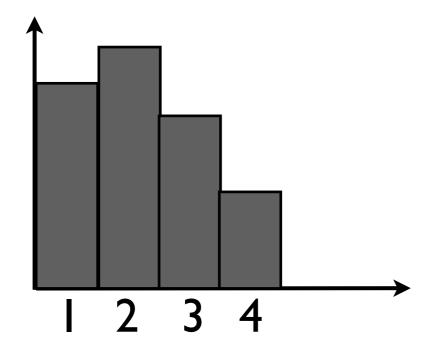
 $(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta)$

Why the CRP? Finite, fixed number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$



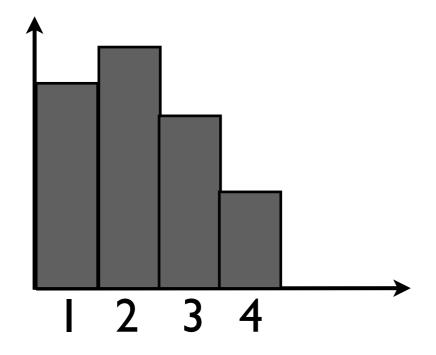
 $(q_k)_{k=1}^K \sim \text{Dirichlet}(K,\theta)$

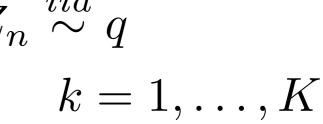
Why the CRP?Finite, fixed number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$ $Z_n \overset{iid}{\sim} q$



$$(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta)$$

Why the CRP?Finite, fixed number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$ $Z_n \overset{iid}{\sim} q$

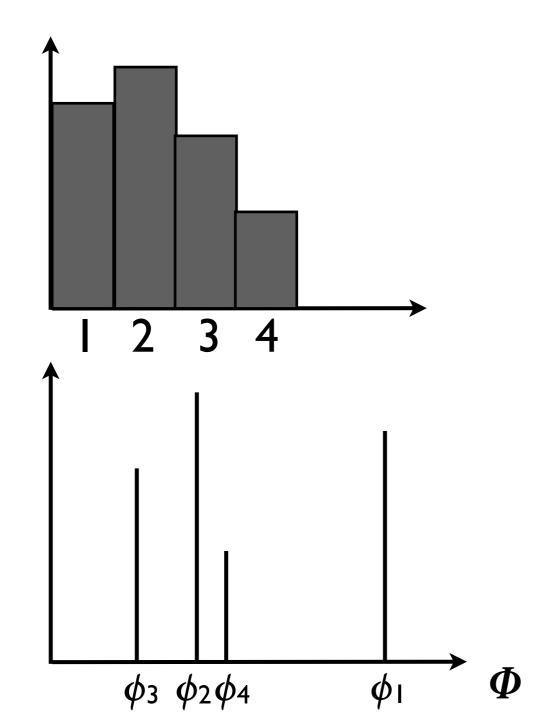




 $(q_k)_{k=1}^K \sim \text{Dirichlet}(K,\theta)$

$$\phi_k \stackrel{iid}{\sim} H$$
$$k = 1, \dots, K$$

Why the CRP?Finite, fixed number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$ $Z_n \stackrel{iid}{\sim} q$

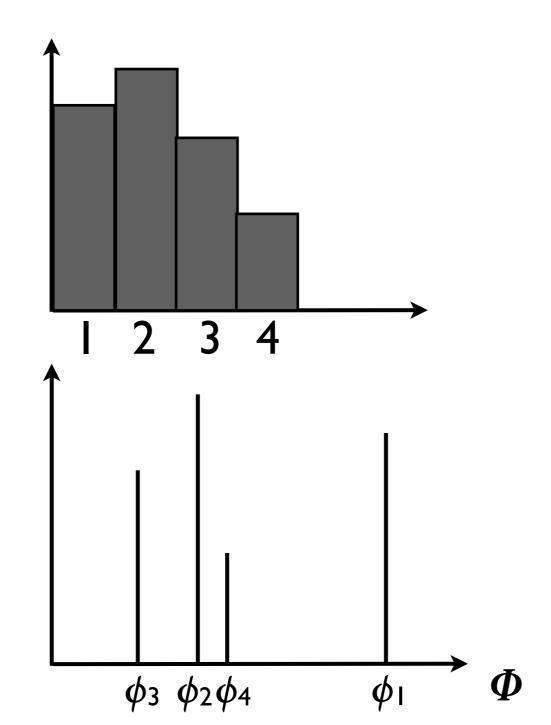


 $(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta)$

 $k = 1, \ldots, K$

$$\phi_k \stackrel{iid}{\sim} H$$
$$k = 1, \dots, K$$

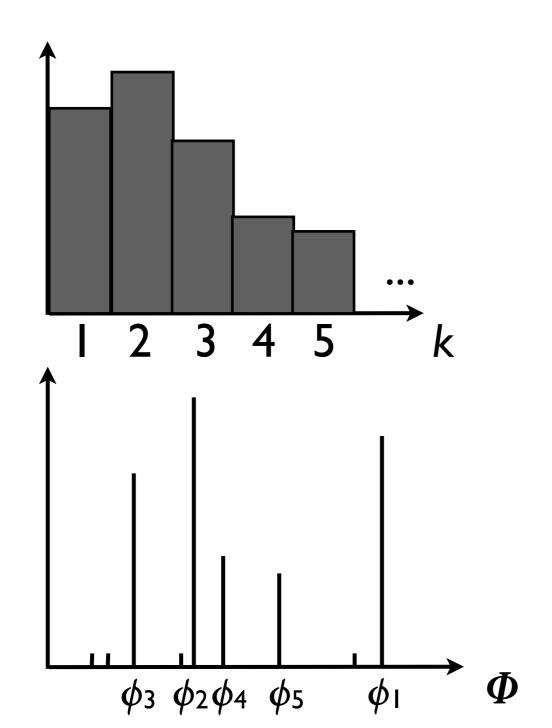
Why the CRP? Unbounded number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$ $Z_n \stackrel{iid}{\sim} q$



 $k = 1, \ldots, K$

$$\phi_k \stackrel{iid}{\sim} H$$
$$k = 1, \dots, K$$

Why the CRP?Unbounded number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$ $Z_n \overset{iid}{\sim} q$



 $(q_k)_{k=1}^{\infty} \sim \text{atom weights of}$ Dirichlet $\operatorname{Process}(\theta)$

 $k = 1, 2, \ldots$

$$\phi_k \stackrel{iid}{\sim} H$$
$$k = 1, 2, \dots$$

Why the CRP? Unbounded number of clusters $\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$ $Z_n \stackrel{iid}{\sim} q$ $k = 1, \dots, K$

CRP is the marginal distribution on partitions of the data indices

Ф

6

2

3

 $\phi_3 \phi_2 \phi_4$

4 5

*δ*5

 $(q_k)_{k=1}^{\infty}$ ~atom weights of Dirichlet $\operatorname{Process}(\theta)$

$$\phi_k \stackrel{iid}{\sim} H \ k=1,\ldots,K$$