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Nonparametric Bayesian statistics

Bayesian
• Specify a generative model
• Calculate posterior

Nonparametric (Bayesian)
• Number of parameters grows with the size of the data



Nonparametric Bayesian statistics

Continuous/ordinal
• E.g. Gaussian process
• Supervised learning

[Gramacy 2008]

smooth function



Nonparametric Bayesian statistics

Discrete/combinatorial
• E.g. Dirichlet process
• Latent/unsupervised learning

[Wilcox et al 2002]

σ :1→ 5
2→ 1
3→ 4
4→ 2
5→ 3

tree

permutation
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[Krivitsky, Handcock 2008]
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Clustering

Document clustering

[Carpineto et al 2009]

...is useful
• Exploratory data analysis
• Classes are unspecified 
(changing too quickly, 
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Image segmentation

[Fei-Fei 2011]
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Clustering ...is useful
• Exploratory data analysis
• Classes are unspecified 
(changing too quickly, 
expensive to label data, 
unknown, etc)

Topic Analysis

[Blei et al 2003]
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• Don’t know the number of 
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[Blei et al 2003]
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• What does                      look like?P(ΠN = πN )

πN = {A1, A2, . . . , AK}

P(ΠN = πN ) = p(|A1|, |A2|, . . . , |AK |)

Clustering

• Take any partition

“Exchangeable partition probability function”
(EPPF)

p: symmetric in its arguments

[Pitman 1995]
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[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process

K = 0

2

5

9
8

4

67

3

K = 3

1

[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process

K = 0

[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process
• Customers prefer popular tables

K = 0

[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process
• Recursively: nth person sits

K = 0

[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process
• Recursively: nth person sits

• at table k (of K) with probability ∝ (# people there)

K = 0

[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process
• Recursively: nth person sits

• at new table K+1 with probability

• at table k (of K) with probability ∝ (# people there)

∝ θ

K = 0

[Blackwell, MacQueen 1973; Aldous 1985]



EPPF Example

Chinese restaurant process
• Recursively: nth person sits

• at new table K+1 with probability

• at table k (of K) with probability ∝ (# people there)

∝ θ

K = 0
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[Blackwell, MacQueen 1973; Aldous 1985]
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Gibbs sampling: potential issues
• Bad mixing from dependence on cluster parameter
• Bad mixing since each indicator depends on rest
• Non-conjugate prior

EPPF: Calculating posterior

Zn ∼ P(Zn|X, µ, Z−n)

Instead try:
split-merge sampler

[Jain, Neal 2000]
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Gibbs sampling: potential issues
• Bad mixing from dependence on cluster parameter
• Bad mixing since each indicator depends on rest
• Non-conjugate prior

EPPF: Calculating posterior

[Neal 2000]

Instead try:
Metropolis Hastings, 
auxiliary variables, etc



Cluster labels

• For previous Gibbs sampler, choose by 
computational convenience
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...

[McCloskey 1965; Patil and Taillie 1977;
Sethuraman 1984; Ishwaran, James 2001]
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Why use stick-breaking?
• More general models
• May want to infer the stick lengths
 

 
 

Stick-breaking: calculating posterior
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• Finite approximation
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• Mean field

Stick-breaking: calculating posterior

[Papaspiliopoulos, Roberts 2008]
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n = 1, . . . , N

MCMC
• Finite approximation
• Retrospective sampling
• Slice sampling

Variational methods
• Mean field

Stick-breaking: calculating posterior
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φk Vk

k
[Blei, Jordan 2004]
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Stick-breaking: extensions
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Random probability measure

Φ
ϕ1ϕ2ϕ3 ϕ4 ϕ5

Example: Dirichlet process
 • The random probability measure with
CRP stick-breaking atom sizes

 • Def: Random measure with total mass one

 • Here, we also have point process

atom
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(qk)∞k=1 ∼atom weights of
Dirichlet Process(θ)

Why the CRP?
π9 = {{9, 2, 7, 1},

{8, 4, 6}, {5, 3}}

k1 2 3 4 5

...

Φϕ1ϕ2ϕ3 ϕ4 ϕ5

φk
iid∼ H
k = 1, . . . ,K

Zn
iid∼ q

Z ′
n = φZnk = 1, . . . ,K

Unbounded number of clusters

CRP is the marginal distribution
on partitions of the data indices


