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Nonparametric Bayesian statistics

Bayesian
* Specify a generative model
* Calculate posterior

Nonparametric (Bayesian)
* Number of parameters grows with the size of the data



Nonparametric Bayesian statistics

Continuous/ordinal

* E.g. Gaussian process

* Supervised learning H functi
smooth function
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Nonparametric Bayesian statistics

Discrete/combinatorial

* E.g. Dirichlet process tree PPN - Anomaiepisicas
. . ‘\ Leptotyphlopidae
* Latent/unsupervised learning
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Clustering

...Is hard

A .
* Unsupervised
* Data dimensions not always
oo, easy to visualize
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Clustering ...Iis useful

* Exploratory data analysis

Network Analysis
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[Krivitsky, Handcock 2008]
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Clustering

Document clustering

...is useful

* Exploratory data analysis
* Classes are unspecified
(changing too quickly,
expensive to label data,
unknown, etc)
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Clustering

...is useful

* Exploratory data analysis
* Classes are unspecified
(changing too quickly,
expensive to label data,

unknown, etc)

[Fei-Fei 201 1]



Clustering

Topic Analysis

...is useful

* Exploratory data analysis
* Classes are unspecified
(changing too quickly,
expensive to label data,
unknown, etc)
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Topic Analysis

Why Bayesian?

* Flexibility to specify model
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Topic Analysis

Why Bayesian!?
* Flexibility to specify model
Why nonparametric?
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Clustering

Topic Analysis

Why Bayesian!?
* Flexibility to specify model
Why nonparametric?

e Don’t know the number of
clusters in advance
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Partition of |, 2, ..., 9

X7 (or clusterin

1 g — 5%9,2,7,1},
) (8,4,6},
9\\i:/ 7 {5,3}}

— L5 0<\$6 \

cluster

N: Number of data points
K: Number of clusters
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Partition of |, 2, ..., 9

L7 or clusterin
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N: Number of data points (N =9)

K: Number of clusters
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R Partition
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Random partition Partition of 1,2, ...,9

IP)(HN :7TN) 9 = {{9727771}7
{8,4,6},{5,3}}

* Exchangeable P(Ily = mg) = P(Ily = )

e = {{1,3,8,2},
19,9, 71,16, 4} 1
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Random partition
IP)(HN — 7TN)

* Exchangeable
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Random partition
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Random partition
IP)(HN — 7TN)

* Exchangeable

* (Almost surely)
consistent sequence
of partitions

Partition of 1,2, ...,9
g = {{97 27 77 1}7
{8,4,6},{5,3}}

P(Ily = 7g) = P(Ily = my)

o = {{1,3,8,2},
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Random partition
IP)(HN — 7TN)

* Exchangeable

* (Almost surely)
consistent sequence
of partitions

Partition of |, 2, ...,9
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Clustering

Random partition
IP)(HN — 7TN)

* Exchangeable

* (Almost surely)
consistent sequence
of partitions

Partition of 1,2, ...,9
g = {{97 27 77 1}7
{8,4,6},{5,3}}

P(Ily = 7g) = P(Ily = my)

mh = {{1,3,8,2},
{9,5,7},{6,4}}

10 — {{9, 2, 7, 10, 1},
{8,4,6},{5,3}}
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* What does P(1Iy = 7 ) look like?
* Take any partition nwy = {A1, Ao,..., Ak}
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Clustering

* What does P(1Iy = 7 ) look like?
* Take any partition nwy = {A1, Ao,..., Ak}

P(HN — 71-N) — p(|"41‘7 ‘A2|7 SO ‘AKD
p: symmetric in its arguments

[Pitman 1995]



Clustering

* What does P(1Iy = 7 ) look like?
* Take any partition 7wy = {A1,As,..., Ak}

P(Ily = nn) = p([Aa], [A2], ., [Ak])
\ p: symmetric in its arguments

“Exchangeable partition probability function”
(EPPF)

[Pitman 1995]
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* Distribution
O Clusters (Example: Chinese restaurant process)
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Chinese restaurant process
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* Table & cluster
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EPPF Example

Chinese restaurant process

* Restaurant < partition
* Table & cluster

e Customer < index

9 ={4{9,2,5,1},{7,3},{8,4,6}}

[Blackwell, MacQueen 1973;Aldous 1985]
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Chinese restaurant process

* Customers prefer popular tables

[Blackwell, MacQueen 1973;Aldous 1985]
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EPPF Example

Chinese restaurant process

* Recursively: nth person sits
» at table k (of K) with probability o< (# people there)

concentration parameter

* at new table K+/ with probability o 6

[Blackwell, MacQueen 1973;Aldous 1985]
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Chinese restaurant process

* Recursively: nth person sits
» at table k (of K) with probability o< (# people there)

* at new table K+/ with probability o 6

........ P
K = k=2
2 1 9
3+ 0 310 3+ 0
P(Ily = 74) = - 0°
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* Recursively: nth person sits
» at table k (of K) with probability o< (# people there)
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3 4 E
8
7 ..
o8 o
k = | k=2 k=3
1 2
P(ITy = ) = 6% (31-11-21)




EPPF Example

Chinese restaurant process

* Recursively: nth person sits
» at table k (of K) with probability o< (# people there)

related to number
of clusters

* at new table K+/ with probability o 6

3 4 E
8
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o8 o
k = | k=2 k=3
1 2
P(ITy = ) = 6% (31-11-21)
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Chinese restaurant process

k=72 k=3
1 2
5 6% (3!-11-2)
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EPPF Example

Chinese restaurant process

k=1 k=2 k=3
9 — {{97 2,0, 1}7 {77 3}7 {87 4, 6}}
1
P(Ilg = m9) = 0% (31121

Hi:l(” +0)
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EPPF Example

Chinese restaurant process

TN
6~__~ . Tk =3
k = | k=2 k=3
# clusters
v ={A1,As, ..., Ax} K/ /size of kth
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EPPF Example

Chinese restaurant process

k=1 k=2 k=3

TN — {Al,AQ, “ . ,AK} P(HN — 7TN) :p(‘A1|, |A2‘, ¢« ooy |AK|)

K
05 ][ (Al = 1)t (EPPF)
k=1
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* Exchangeable
 Consistent




EPPF Example

Chinese restaurant process

* Exchangeable
 Consistent
* Random number of clusters
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|. Clusters

e Distribution

¢ Data given clusters (Example: Gaussian mixture)
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EPPF: Part of full generative model

A 1 g — {{9,2,5,1},{7,3},
N (8,4,6)})
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EPPF: Part of full generative model

A

11d
ur ~ N(0,p°Ip)
@ )@ X, "~ Nz, 0% Ip)

“Gaussian mixture model”




EPPF: Part of full generative model

12d
o ~ H

@ ’@ X, " F(¢z,)
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EPPF: Calculating posterior

Calculating posterlor P(Z, 1| X)

all cluster indicators \
(N integers) all data points
(N vectors of length D)

all cluster means
(K vectors of length D)

D: data dimension
N: number data points
K: (random) number of clusters
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EPPF: Calculating posterior

Calculating posterior: P(Z, u|X)

* Usually can’t do exact calculation
* Approximation (MCMC, variational methods)

Type of MCMC method
Gibbs sampling<—

[Geman, Geman [984]
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* Usually can’t do exact calculation
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[Geman, Geman [984]



EPPF: Calculating posterior

Calculating posterior: P(Z, u|X)

* Usually can’t do exact calculation
* Approximation (MCMC, variational methods)

Gibbs sampling

* Sample each variable conditioned on the rest
P(Z.| X, u, Z_p), n=1,...,N
]P)(:uk:Xazmu—k:)v ]{7:1,,K




EPPF: Calculating posterior

Calculating posterior: P(Z, u|X)

* Usually can’t do exact calculation
* Approximation (MCMC, variational methods)

Gibbs sampling

* Sample each variable conditioned on the rest
P(Z.| X, u, Z_p), n=1,...,N
]P)(,U]{;X,Z,,u_k;), kzlaaK

\

function of Z
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Gibbs sampling

* Sample each variable conditioned on the rest
P(X, Z, u)
P(X, Z_n, 1)
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EPPF: Calculating posterior
Gibbs sampling

* Sample each variable conditioned on the rest
P(X, Z, p)
P(X, Z—n, 1)
P(IIn)P(Xp| 25, 1)
P(IIn_1)

]P)(ZTL|X7 :ua Z—n) —

X



EPPF: Calculating posterior
Gibbs sampling

* Sample each variable conditioned on the rest

P(X.Z.
P(Z,| X, u, Z_,) = ( 1) use exchangeability

P(X, Z_n, 1)
P(Hmwww/
> P(Tly_)




EPPF: Calculating posterior
Gibbs sampling

* Sample each variable conditioned on the rest

P(X, Z, p)

P(X, Z_n, 1)

- PAIN)P(Xn[Zn, p)
P(IIn_1)

e.g. Chinese restaurant process for clusters;

Gaussian mixture for
data given clusters

P(Zn| X, 11, Z—y) =




EPPF: Calculating posterior
Gibbs sampling

* Sample each variable conditioned on the rest

P(X, Z, p)

P(X, Z_n, 1)

- PAIN)P(Xn[Zn, p)
P(IIn_1)

P(Zn| X, 11, Z—y) =

e.g. CRP for clusters;
Gaussian mixture for
data given clusters
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EPPF: Calculating posterior
Gibbs sampling

* Sample each variable conditioned on the rest

P(X, Z, i)
P Z’n X7 7Z—n —
Il Zon) = B 7
 PLY)P(X,|Z0, )
P(IIn_1)
e.g. CRP for clusters; 5 - B
Gaussian mixture for = { %(in 'gk’i Ip)y 11+9 gn =K
data given clusters (X0, (p* +0?) D)N 1_|_9 n NEW

[Escobar 1994;West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]
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* |nitialize
* Repeat
2 . & Sample cluster indicators
@
.I. 0q % .
e e, ¢ Sample cluster parameters
® O
g ©
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!. "I'g y
e 3 *3 o
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@
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EPPF: Calculating posterior

* Assign all points to one cluster




EPPF: Calculating posterior

* Repeat
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EPPF: Calculating posterior

¢ Sample cluster parameters
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) t=8

O Fork=1,..,K
pr ~ (o X, Z, p—i)
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EPPF: Calculating posterior

Gibbs sampling: potential issues
* Bad mixing from dependence on cluster parameter

Instead try:

collapsed sampler

* Instead of P(Z, u|X)
learn P(Z|X)

[Neal 1992; MacEachern 1994; Neal 2000]
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EPPF: Calculating posterior

Gibbs sampling: potential issues

* Bad mixing from dependence on cluster parameter
* Bad mixing since each indicator depends on rest

L ™~ IPD(an(a s Z—n)

Instead try:

| split-merge sampler

2 4 0 : > [Jain, Neal 2000]
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Gibbs sampling: potential issues

* Bad mixing from dependence on cluster parameter
* Bad mixing since each indicator depends on rest
* Non-conjugate prior

;.." '." ":" S
"~ WY o,




EPPF: Calculating posterior

Gibbs sampling: potential issues

* Bad mixing from dependence on cluster parameter
* Bad mixing since each indicator depends on rest
* Non-conjugate prior

., e Instead try:
| ‘e P W'l © Metropolis Hastings,
a3y é’.' ) &;{. auxiliary variables, etc

y 0 1' > [Neal 2000]



Cluster labels

* For previous Gibbs sampler, choose by
computational convenience
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Order of appearance
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[Pitman 2006]
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k

| 2 3 4
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* Recursively: nth person sits

* at table k (of K) with probability

Z1=1 x (# people there)
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Cluster labels

Order of appearance

O 00 N O 1 A W N —

k

2 3 4

* Recursively: nth person sits

* at table k (of K) with probability

Z1=1 x (# people there)

o=l at new table K+/ with probability
£3=2 x 6

Z4=3

Ls=|

* The clustering is exchangeable
* Z» here NOT exchangeable

* A matrix is a clustering and an
integer labeling
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& Put it back with another ball

of the same color

I
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* Example: G2 =2, W, =2
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Aside: Polya Urn

Then 3V ~ Beta(Gp, Wy)

s.t. Gpo11 — Gy us Bernoulli(V)

or h W N —

!

v

[Polya 1930; Freedman 1965]
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* First cluster: Polya urn with
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Vi ~ Beta(1, 0)
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Stick-breaking

2 3 4 5 [McCloskey |965; Patil and Taillie 1977;
k Sethuraman 1984; Ishwaran, James 2001]
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Stick-breaking |

Va(1-Vy)

— (1-V1)(1-V2)
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Stick-breaking: part of full gen model

11d
o ~ H




Stick-breaking: part of full gen model

@ Vv, Beta(1, 6)

l k—1
Gk a=Vi [ |1 =V))
k =1
Zn ™ g
12d
¢ ~ H




Outline

|. Clusters

* Proportions
& Generative model (Example: CRP stick-breaking)



Outline

|. Clusters

* Proportions

& Posterior



Stick-breaking: calculating posterior

Why use stick-breaking?

* More general models
* May want to infer the stick lengths
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Stick-breaking: calculating posterior

MCMC

* Finite approximation

U

| 2 3 4

| 2 3 4 5
k k

[Ishwaran, Zarepour 2000]
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Stick-breaking: calculating posterior

MCMC

* Finite approximation
* Retrospective sampling

[Papaspiliopoulos, Roberts 2008]
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MCMC

* Finite approximation
* Retrospective sampling
* Slice sampling

| 2 3 4 5

[Walker 2007]
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Stick-breaking: calculating posterior

MCMC

* Finite approximation
* Retrospective sampling
* Slice sampling

Variational methods
* Mean field

() ()

(o)

[Blei, Jordan 2004]
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Stick-breaking: extensions

k
| 2 3 4
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Connections

Exchangeable
clustering

EPPF

Chinese
restaurant

CRP

CRP
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Random probability measure

 Def: Random measure with total mass one

b5 $rps 03
),

)

* Here, we also have point process

atom

Example: Dirichlet process

* The random probability measure with
CRP stick-breaking atom sizes
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Wh)’ the CRP? Unbounded number of clusters
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Wh)’ the CRP? Unbounded number of clusters

T = {{9,2,7,1},
11d
{8,4,6},{5,3}} g i
k=12, ...

(qr)r=1 ~atom weights of
Dirichlet Process(0)

| 2 3 4 5 k

12d
o ~ H

k=1,2,...

b drbs b5 b1 D



Wh)’ the CRP? Unbounded number of clusters

CRP is the marginal distribution
on partitions of the data indices




