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Feature allocation

Genetic admixture

Hispanic/
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0.6 —
0.4 —
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0.0 —~

[Bryc et al 2010]
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FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS IT'EACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRANMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

parst 1o will give 51 .2 to Lincoln Center, Metropoli-

k Philharmonic and Juilliard School. “Our board felt that we had a
a mark on the future of the performing arts with these grants an act
pur traditional areas of support in health, medical rescarch. education

Hearst Foundas t Randolph A. Hearst said Monday in
Lincoln Center’s share will be $200.000 for its new building. which
and provide new | The Metropolitan Opera Co. and
will receive each. The Juilliard School, where music and

the performing arts are taught, will get 525
of the Lincoln Center Consolidated Corporate [und.

donation, too.

The Hearst | n, aleading supporter
will make its usual annual 51000

[Blei et al 2003]
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Switching behaviors
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* Clustering: Exchangeable partition probability function (EPPF)
* What about feature allocations!?

“Exchangeable feature probability function” (EFPF)?
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P- SYmmetl”iC in feature sizes [Broderick, Jordan, Pitman 2012]
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Frequency model

IBP frequencies »Beta process

[ Thibaux, Jordan 2007]
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Aside: Poisson process
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Wh)’ the IBP? Unbounded number of features

Jo = {{17576}7{8}7{8}7
{8,5},{1,6}} Lk g Bern(qy)
k=1.... K

12d

qr ~ Beta(1l,0)
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Wh)’ the IBP? Unbounded number of clusters

Jo = {{17576}7{8}7{8}7
{8,5},{1,6}} Lk g Bern(qy)
k=1,2,...
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Kingman paintbox
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