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Genetic admixture

[Bryc et al 2010]
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Not a frequency model

p1 != (p1 + p3)(p2 + p3)
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[Broderick, Pitman, Jordan (submitted)]
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[Griffiths, Ghahramani 2011]
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Beta processIBP frequencies

[Thibaux, Jordan 2007]
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[Hjort 1990; Thibaux, Jordan 2007]
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(qk)∞k=1 ∼atom weights of
beta process(γ, θ)

k1 2 3 4 5

...

Φϕ1ϕ2ϕ3 ϕ4 ϕ5

φk
iid∼ H

Unbounded number of clusters

k = 1, 2, . . .

k = 1, 2, . . .

Znk
iid∼ Bern(qk)

Why the IBP?
f9 = {{1, 5, 6}, {8}, {8},

{8, 5}, {1, 6}}
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