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Bayes Foundations ROad map

Unsupervised Learning
 Example problem: clustering
 Example BNP model: Dirichlet process (DP)

OB _
S 6?5
e Chinese restaurant process
Supervised Learning
 Example problem: regression

 Example BNP model: Gaussian process (GP)
Venture further into the wild world of Nonparametric Bayes

Big questions
 Why BNP?

 \What does an infinite/growing number of parameters really
mean (in BNP)?

 Why is BNP challenging but practical?
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E.g., Information retrieval

Major constituents of the arts include
literature — including poetry, novels
and short stories, and epics;
performing arts — among them music,
dance, and theatre; culinary arts
such as baking, chocolatiering, and
winemaking; media arts like
photography and cinematography,
and visual arts — including drawing

painting, ceramics, and § Architecture has to do with planning,
Some art forms combine| designing and constructing form,
element with performanc| space and ambience to reflect

and the written word (e.g| functional, technical, social,
environmental and aesthetic

Snail races usually take place on a
circular track with the snails starting
in the middle and racing to the
perimeter. The track usually takes the

form of a damp cloth atop a table.
Tho radinic ic traditinnallvs oo at 13 or

The term economics comes from the pre
Ancient Greek oikovopia from olkog | stickers
(oikos, "house") and vopocg (nomos, p

"custom” or "law"), hence "rules of the
house (hold for good management)".
'‘Political economy' was the earlier
name for the subject, but economists
in the late 19th century suggested
"economics" as a shorter term for
"economic science" to establish itself
as a separate discipline outside of
political science and other social

Drt is generally recognised as

ivities which are based in physical
leticism or physical dexterity, with
largest major competitions such
the Olympic Games admitting only
brts meeting this definition, and

considerations. It requires the
creative manipulation and
coordination of materials and
technology, and of light and shadow.
Often, conflicting requirements must
be resolved.

sciences.

The central premise of Moneyball is
that the collected wisdom of baseball
insiders (including players,
managers, coaches, scouts, and the
front office) over the past century is
subjective and often flawed. [...] The

Agricultural economics today
includes a variety of applied areas,
having considerable overlap with
conventional economics. Agricultural
economists have made substantial
contributions to research in
economics, econometrics,
development economics, and
environmental economics.
Agricultural economics influences
food policy, agricultural policy, and
environmental policy.

and Vuelta a Espafia make up

=—=l-—prgues that the Oakland A's'

The Tour de France, the Giro d'ltalia  jffice took advantage of more

ical gauges of player

cycling's prestigious, three-week- mance to field a team that

long Grand Tours; the Tour is the
oldest and generally considered
most prestigious of the three.

better compete against richer
the  ptitors in Major League
all (MLB).

as sports.

er organisations such as the
uncil of Europe using definitions
precluding activities without a
physical element from classification

Traditionally, the race is held primarily
in the month of July. While the route
changes each year, the format of the
race stays the same with the
appearance of time trials, the
passage through the mountain
chains of the Pyrenees and the Alps,
and the finish on the Champs-
Elysées in Paris.

The basic tool for econometrics is the
linear regression model. In modern
econometrics, other statistical tools
are frequently used, but linear
regression is still the most frequently
used starting point for an analysis.
Estimating a linear regression on two
variables can be visualized as fitting
a line through data points
representing paired values of the
independent and dependent
variables.

The increasing tendency to privilege
painting, and to a lesser degree
sculpture, above other arts has been
a feature of Western art as well as
East Asian art. In both regions
painting has been seen as relying to
the highest degree on the
imagination of the artist, and the
furthest removed from manual labour
- in Chinese painting the most highly
valued styles were those of "scholar-
painting", at least in theory practiced
by gentleman amateurs. The Western
hierarchy of genres reflected similar
attitudes.

[wikipedia.org]
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Snail races usually take place on a
circular track with the snails starting
in the middle and racing to the
perimeter. The track usually takes the
form of a damp cloth atop a table.
The radius is traditionally set at 13 or
14 inches. Racing numbers are
painted on the shells or small stickers
or tags are placed on them to
distinguish each competitor.

[wikipedia.org]
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Dirichlet(p1.x|a1.x) =

a =(0.5,0.5,0.5)

 What happens?
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Dirichlet distribution revievv ar >0
Z ak ﬁ pk6(071)

Dirichlet(p1. g la1-x k=1 _
(p1:K] ) = Hk T 11 ;ﬂk—l

a =(0.5,0.5,0.5) a=(55,5) a = (40,10,10)

N

density

« What happens? a=a,=1 a=ai — 0

1
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density

Dirichlet distribution revievv ar >0

Z ak K Pk € (07 1)
Dirichlet(p1.x|a1.x) = k=1 H _ 1
[T, Do) 1o 2
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density

Dirichlet distribution revievv ar >0

Z ak K Pk € (07 1)
Dirichlet(p1.x|a1.x) = k=1 H _ 1
[T, Do) 1o 2

a =(0.5,0.5,0.5) a=(5,5,5) a = (40,10,10)

1 08
2 p7

e What happens? a=a,=1 a=ar—0 a=ap—

Dirichlet is conjugate to Categorical [demo]
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What if K> N7

* e.g. species sampling, topic modeling, groups on a
soclal network, etc.

P1 P2 P3 £1000

 Components: number of latent groups

e Clusters: number of components represented in the data
 [demo 1, demo 2]

 Number of clusters tor N data points is random

 Number of clusters grows with N
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Choosing K = o
* Here, difficult to choose finite K in advance (contrast with
small K): don't know K, difficult to infer, streaming data




