

Variational Bayes and beyond: Bayesian inference for big data

Tamara Broderick

ITT Career Development Assistant Professor, MIT

2.0

0.020

Intended Flight Path

Stone et al 2

- Analysis goals: Point estimates, coherent uncertainties
 - Interpretable, complex, modular; expert information

- Analysis goals: Point estimates, coherent uncertainties
 - Interpretable, complex, modular; expert information

- Analysis goals: Point estimates, coherent uncertainties
 - Interpretable, complex, modular; expert information

Challenge: fast (compute, user), reliable inference

- Analysis goals: Point estimates, coherent uncertainties
 - Interpretable, complex, modular; expert information

Uncertainty doesn't have to disappear in large data sets

• Modern problems: often large data, large dimensions

- Modern problems: often large data, large dimensions
- Variational Bayes can be very fast

- Modern problems: often large data, large dimensions
- Variational Bayes can be very fast

NEW MILLION CHILDREN SCHOOL BIE G	
SHOW PROGRAM PEOPLE SCHOOLS MUSIC BUDGET CHILD EDUCATION MOVIE BILLION YEARS TEACHERS PLAY FEDERAL FAMILIES HIGH MUSICAL YEAR WORK PUBLIC BEST SPENDING PARENTS TEACHER ACTOR NEW SAYS BENNETT FIRST STATE FAMILY MANIGAT YORK PLAN WELFARE NAMPHY OPERA MONEY MEN STATE	et al 103]
THEATER PROGRAMS PERCENT PRESIDENT ACTRESS GOVERNMENT CARE ELEMENTARY LOVE CONGRESS LIFE HAITI	

- Modern problems: often large data, large dimensions
- Variational Bayes can be very fast

NEW MILLION CHILDREN SCHOOL BIE G	
SHOW PROGRAM PEOPLE SCHOOLS MUSIC BUDGET CHILD EDUCATION MOVIE BILLION YEARS TEACHERS PLAY FEDERAL FAMILIES HIGH MUSICAL YEAR WORK PUBLIC BEST SPENDING PARENTS TEACHER ACTOR NEW SAYS BENNETT FIRST STATE FAMILY MANIGAT YORK PLAN WELFARE NAMPHY OPERA MONEY MEN STATE	et al 103]
THEATER PROGRAMS PERCENT PRESIDENT ACTRESS GOVERNMENT CARE ELEMENTARY LOVE CONGRESS LIFE HAITI	

- Modern problems: often large data, large dimensions
- Variational Bayes can be very fast

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	school [Blei et al
FILM	TAX	WOMEN	CTUDENTC
SHOW	PROGRAM	PEOPLE	SCHOOLS 2003]
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

[Airoldi et al 2008]

- Modern problems: often large data, large dimensions
- Variational Bayes can be very fast

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	school [Blei et al
FILM	TAX	WOMEN	CTUDENTS
SHOW	PROGRAM	PEOPLE	schools 2003
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

[Airoldi et al 2008]

- Modern problems: often large data, large dimensions
- Variational Bayes can be very fast

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	school [Blei et al
FILM	TAX	WOMEN	CTUDENTS
SHOW	PROGRAM	PEOPLE	schools 2003]
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

[Gershman et al 2014]

[Airoldi et al 2008]

Roadmap

- Bayes & Approximate Bayes review
- What is:
 - Variational Bayes (VB)
 - Mean-field variational Bayes (MFVB)
- Why use MFVB?
- When can we trust MFVB?
- Where do we go from here?

Roadmap

- Bayes & Approximate Bayes review
- What is:
 - Variational Bayes (VB)
 - Mean-field variational Bayes (MFVB)
- Why use MFVB?
- When can we trust MFVB?
- Where do we go from here?

 $\begin{array}{c} \text{parameters} \\ p(\theta) \\ \text{prior} \end{array}$

parameters

$$p(y_{1:N}|\theta)p(\theta)$$

likelihood prior

parameters

$$p(y_{1:N}|\theta)p(\theta)$$

likelihood prior

Bayesian inference /data /parameters

$$p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$$

posterior likelihood prior

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$

parameters

posterior likelihood prior

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$

posterior likelihood prior

, parameters

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$ posterior likelihood prior

parameters

1. Build a model: choose prior & choose likelihood

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$

parameters

posterior likelihood prior

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior

Bayesian inference Jata Jpara

$$p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$$

posterior likelihood prior

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$

posterior likelihood prior

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances
- Why are steps 2 and 3 hard?

Bayesian inference 1 data

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$ posterior likelihood prior

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances
- Why are steps 2 and 3 hard?
 - Typically no closed form

Bayesian inference ydata yp

 $p(\theta|y_{1:N}) \propto_{\theta} p(y_{1:N}|\theta)p(\theta)$ posterior likelihood prior

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances
- Why are steps 2 and 3 hard?
 - Typically no closed form, high-dimensional integration

Bayesian inference 1 data 1 parameters

$$p(\theta|y_{1:N}) = p(y_{1:N}|\theta)p(\theta)/p(y_{1:N})$$
 posterior likelihood prior

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances
- Why are steps 2 and 3 hard?
 - Typically no closed form, high-dimensional integration

Bayesian inference / data / parameters

 $p(\theta|y_{1:N}) = p(y_{1:N}|\theta)p(\theta)/p(y_{1:N})$ posterior likelihood prior evidence

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances
- Why are steps 2 and 3 hard?
 - Typically no closed form, high-dimensional integration

Bayesian inference Jata Jarameters

$$p(\theta|y_{1:N}) = p(y_{1:N}|\theta)p(\theta)/\int p(y_{1:N},\theta)d\theta$$
 posterior likelihood prior evidence

- 1. Build a model: choose prior & choose likelihood
- 2. Compute the posterior
- 3. Report a summary, e.g. posterior means and (co)variances
- Why are steps 2 and 3 hard?
 - Typically no closed form, high-dimensional integration

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

- Gold standard: Markov Chain Monte Carlo (MCMC)
 - Eventually accurate but can be slow

[Bardenet, Doucet, Holmes 2017]

- Gold standard: Markov Chain Monte Carlo (MCMC)
- [Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$
 [board]

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Approximate posterior with q*

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

• Variational Bayes (VB): f is Kullback-Leibler divergence $KL(q(\cdot)||p(\cdot|y))$

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

Approximate posterior with q*

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

• Variational Bayes (VB): f is Kullback-Leibler divergence $KL(q(\cdot)||p(\cdot|y))$

- Gold standard: Markov Chain Monte Carlo (MCMC)
- [Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

- Variational Bayes (VB): f is Kullback-Leibler divergence $KL(q(\cdot)||p(\cdot|y))$
- VB practical success

- Gold standard: Markov Chain Monte Carlo (MCMC)
- [Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

- Variational Bayes (VB): f is Kullback-Leibler divergence $KL(q(\cdot)||p(\cdot|y))$
- VB practical success: point estimates and prediction

- Gold standard: Markov Chain Monte Carlo (MCMC)
- [Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

- Variational Bayes (VB): f is Kullback-Leibler divergence $KL(q(\cdot)||p(\cdot|y))$
- VB practical success: point estimates and prediction, fast

Gold standard: Markov Chain Monte Carlo (MCMC)

[Bardenet, Doucet, Holmes 2017]

Eventually accurate but can be slow

Instead: an optimization approach

$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

- Variational Bayes (VB): f is Kullback-Leibler divergence $KL(q(\cdot)||p(\cdot|y))$
- VB practical success: point estimates and prediction, fast, streaming, distributed (3.6M Wikipedia, 350K Nature)

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y))$$

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$KL (q(\cdot)||p(\cdot|y))$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL} \left(q(\cdot) || p(\cdot | y) \right)$$

$$\begin{aligned} \mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right) \\ &:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta \\ &= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta,y)} d\theta \end{aligned}$$

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta,y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta,y)}{q(\theta)} d\theta$$

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot|y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$KL(q(\cdot)||p(\cdot|y))$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$KL(q(\cdot)||p(\cdot|y))$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

• $q^* = \operatorname{argmax}_{q \in Q} \operatorname{ELBO}(q)$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$KL(q(\cdot)||p(\cdot|y))$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

- $q^* = \operatorname{argmax}_{q \in Q} \operatorname{ELBO}(q)$
- KL is positive definite [Board; Bishop 2006, Sec 1.6.1]

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

- $q^* = \operatorname{argmax}_{q \in Q} \operatorname{ELBO}(q)$
- KL is positive definite [Board; Bishop 2006, Sec 1.6.1]
- $KL \ge 0 \Rightarrow \log p(y) \ge ELBO$

Why KL?

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

- $q^* = \operatorname{argmax}_{q \in Q} \operatorname{ELBO}(q)$
- KL is positive definite [Board; Bishop 2006, Sec 1.6.1]
- $KL \ge 0 \Rightarrow \log p(y) \ge ELBO$
- Why KL?

"Evidence lower bound" (ELBO)

Why KL?

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}\left(q(\cdot) || p(\cdot | y)\right)$$

$$\mathrm{KL}\left(q(\cdot)||p(\cdot|y)\right)$$

$$:= \int q(\theta) \log \frac{q(\theta)}{p(\theta|y)} d\theta$$

$$= \int q(\theta) \log \frac{q(\theta)p(y)}{p(\theta, y)} d\theta = \log p(y) - \int q(\theta) \log \frac{p(\theta, y)}{q(\theta)} d\theta$$

- $q^* = \operatorname{argmax}_{q \in Q} \operatorname{ELBO}(q)$
- KL is positive definite [Board; Bishop 2006, Sec 1.6.1]
- $KL \ge 0 \Rightarrow \log p(y) \ge ELBO$
- Why KL (in this direction)?

"Evidence lower bound" (ELBO)

Choose "NICE" distributions

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y))$$

Choose "NICE" distributions

Choose "NICE" distributions

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y)|)$$

Choose "NICE" distributions

 Mean-field variational Bayes (MFVB)

$$Q_{MFVB} := \left\{ q : q(\theta) = \prod_{j=1}^{J} q_j(\theta_j) \right\}$$

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y)|)$$

Choose "NICE" distributions

 Mean-field variational Bayes (MFVB)

$$Q_{MFVB} := \left\{ q : q(\theta) = \prod_{j=1}^{J} q_j(\theta_j) \right\}$$

Often also exponential family

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y)|)$$

Choose "NICE" distributions

 Mean-field variational Bayes (MFVB)

$$Q_{MFVB} := \left\{ q : q(\theta) = \prod_{j=1}^{J} q_j(\theta_j) \right\}$$

- Often also exponential family
- Not a modeling assumption

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y))$$

Choose "NICE" distributions

 Mean-field variational Bayes (MFVB)

$$Q_{MFVB} := \left\{ q : q(\theta) = \prod_{j=1}^{J} q_j(\theta_j) \right\}$$

- Often also exponential family
- Not a modeling assumption

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y))$$

Choose "NICE" distributions

 Mean-field variational Bayes (MFVB)

$$Q_{MFVB} := \left\{ q : q(\theta) = \prod_{j=1}^{J} q_j(\theta_j) \right\}$$

- Often also exponential family
- Not a modeling assumption

Now we have an optimization problem; how to solve it?

$$q^* = \operatorname{argmin}_{q \in Q} \operatorname{KL}(q(\cdot)||p(\cdot|y))$$

Choose "NICE" distributions

 Mean-field variational Bayes (MFVB)

$$Q_{MFVB} := \left\{ q : q(\theta) = \prod_{j=1}^{J} q_j(\theta_j) \right\}$$

- Often also exponential family
- Not a modeling assumption

Now we have an optimization problem; how to solve it?

 One option: Coordinate descent in q_1, \ldots, q_J

Use q^* to approximate $p(\cdot|y)$

Use q^* to approximate $p(\cdot|y)$

Use q^* to approximate $p(\cdot|y)$

Optimization
$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Variational Bayes $q^* = \operatorname{argmin}_{q \in Q} KL(q(\cdot)||p(\cdot|y))$

Use q^* to approximate $p(\cdot|y)$

Optimization
$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} KL(q(\cdot)||p(\cdot|y))$$

Mean-field variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q_{\text{MFVB}}} KL(q(\cdot)||p(\cdot|y))$$

Use q^* to approximate $p(\cdot|y)$

Optimization
$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} KL(q(\cdot)||p(\cdot|y))$$

Mean-field variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q_{\text{MFVB}}} KL(q(\cdot)||p(\cdot|y))$$

Use q^* to approximate $p(\cdot|y)$

Optimization
$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} KL(q(\cdot)||p(\cdot|y))$$

Mean-field variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q_{\text{MFVB}}} KL(q(\cdot)||p(\cdot|y))$$

Coordinate descent

Use q^* to approximate $p(\cdot|y)$

Optimization
$$q^* = \operatorname{argmin}_{q \in Q} f(q(\cdot), p(\cdot|y))$$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} KL(q(\cdot)||p(\cdot|y))$$

Mean-field variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q_{\text{MFVB}}} KL(q(\cdot)||p(\cdot|y))$$

- Coordinate descent
- Stochastic variational inference (\$VI) [Hoffman et al/2013]

Use q^* to approximate $p(\cdot|y)$

Variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q} KL(q(\cdot)||p(\cdot|y))$$

Mean-field variational Bayes

$$q^* = \operatorname{argmin}_{q \in Q_{\text{MFVB}}} KL(q(\cdot)||p(\cdot|y))$$

- Coordinate descent
- Stochastic variational inference (\$VI) [Hoffman et al/2013]
- Automatic differentiation variational inference (ADVI) [Kucukelbir et al 2015, 2017]

Roadmap

- Bayes & Approximate Bayes review
- What is:
 - Variational Bayes (VB)
 - Mean-field variational Bayes (MFVB)
- Why use MFVB?
- When can we trust MFVB?
- Where do we go from here?

Roadmap

- Bayes & Approximate Bayes review
- What is:
 - Variational Bayes (VB)
 - Mean-field variational Bayes (MFVB)
- Why use MFVB?
- When can we trust MFVB?
- Where do we go from here?

References

See the end of Part II for reference list