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OPERA MONEY MEN STATE

ITHEATER PROGRAMS PERCEN'] PRESIDEN']

ACTRESS GOVERNMENT CARE ELEMENTARY

LOVE CONGRESS LIFE HAITI
The William Randolph Hearst will give to Lincoln Center, Metropoli-
tan Opera Co.,, New York Philharmonic and Juilliard School. *Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act
cvery bit as important as our traditional arcas of in health, medical cducation
and the social Hearst Randolph A. Hearst said Monday in

the Lincoln Center’s share will be ° for its new which
will young artists and new The Metropolitan Opera Co. and
New York Philharmonic will each, The Juilliard School, where music and
the performing arts arc taught, will get The Hearst a lcading supporter
of the Lincoln Center Consolidated Corporate will make its usual
donation, too.
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 Bayes & Approximate Bayes review
e What is:
e Variational Bayes (VB)
 Mean-field variational Bayes (MFVB)
 Why use MFVB?
 When can we trust MFVB?
 Where do we go from here?
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e Variational Bayes POly)
q" = argmin, oKL (¢(-)|[p(-|y)) CLOSE
KL (¢(-)[lp(-|v))
_ o, 400)
h /Q(e)l > p(0ly) de
3 q0)p(y) ., p(0,y)
= [ at0)10g L2 Lo = 10gp(0) ~ [ a(0)tog Zas
"Evidence lower
* ¢° = argmax .o ELBO(q) bound” (ELBO)

e KL Is positive definite [Board; Bishop 2006, Sec 16.1]
e KL >0=logp(y) > ELBO

 Why KL (in this direction)?
S
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Variational Bayes ¢ = argmin, oKL (q()|p(-]y))

Choose “NICE” distributions
p(0ly)  Mean-field variational Bayes

CLOSE (MPVB) J
QMFVB = {q :q(0) = H (Jj(ej)}

» Often also exponential family

 Nota modeling assumption
~ MFVB appjrox

Now we have an optimization

problem; how to solve it? |
* One option: Coordinate
descentin qi1,...,4J

[Bishop 2006]




Approximate Bayesian inference



Approximate Bayesian inference

se ¢" to approximate p(:|y




Approximate Bayesian inference

se ¢" to approximate p(:|y
ptimization
q" = argmin,q, f(q(-), p(-|y))




Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
q" = argmin o f(q(-), p(-[y))

Variational Bayes
¢ = argming o KX L(q(-)||p(-|y))




Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
q" = argmingcq f(q(-), p(-[y))

Variational Bayes
¢ = argmin, o KX L(q(-)||p(-|y))

Mean-tield variational Bayes
¢* = argmingeqg,,. s K L(GC)[|p(-[y))




Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
¢" = argmingeo f(q(-), p(+|y))

Variational Bayes
¢ = argmin, o KX L(q(-)||p(-|y))

Mean-tield variational Bayes

\\q*afgilqe@mmKL(Q()p(y))

v




Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
q" = argmingcq f(q(-), p(-[y))

Variational Bayes
¢ = argmin, o KX L(q(-)||p(-|y))

Mean-tield variational Bayes

¢" = argmin o . KL(q(-)||p(-|y))
\\Coordnate descent

v




Approximate Bayesian inference

se ¢" to approximate p(:|y

ptimization
q" = argmingcq f(q(-), p(-[y))

Variational Bayes
¢ = argmin, o KX L(q(-)||p(-|y))

Mean-tield variational Bayes
¢* = argmingeqg,,. s K L(GC)[|p(-[y))

Coordinate descent
o Stochastic variational inference (SVI) (Hoffman €t 812413)




Approximate Bayesian inference
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ptimization
q" = argmingcq f(q(-), p(-[y))

Variational Bayes
¢ = argmin, o KX L(q(-)||p(-|y))

Mean-tield variational Bayes
¢* = argmingeqg,,. s K L(GC)[|p(-[y))

Coordinate descent
o Stochastic variational inference (SVI) (Hoffman €t 812413)
e Automatic differentiation variatiopal
iInference (ADVI) [Kucukelbir et al 2
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