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e Eventually accurate but can be slow 20171
Instead: an optimization
6
p(0]y) approach
FAR * Approximate posterior
with g*

q" = argmin . f(q(-), p(-|y))

* Variational Bayes (VB): fis Kullback-Leibler divergence

KL(q()|lp(-ly))

* VB practical success: point estimates and prediction, fast,
streaming, distributed (3.6M Wikipedia, 350K Nature)

4 [Broderick, Boyd, Wibisono, Wilson, Jordan 2013]



Why KL?

e Variational Bayes
q" = argmin oKL (¢(-)[|p(-[y))

p(0]y)




Why KL?

e Variational Bayes
q" = argmin oKL (¢(-)[|p(-[y))

p(0]y)

KL (q(-)[|p(-]y))

= [ a(o)1or pqg;) 0




Why KL?

e Variational Bayes
q" = argmin oKL (¢(-)[|p(-[y))

KL (q(-)[|p(-]y))




Why KL?

e Variational Bayes
q" = argmin oKL (¢(-)[|p(-[y))

KL (q(-)[|p(-]y))




Why KL?

e Variational Bayes
q" = argmin oKL (¢(-)[|p(-[y))

KL (q(-)[|p(-]y))




Why KL?

e Variational Bayes
q" = argmin oKL (¢(-)[|p(-[y))

KL (q(-)[|p(-]y))




Why KL?

e Variational Bayes
¢ = argmin,c oKL (¢(-)[[p(-[»))

KL (q(-)[|p(-]y))

p(0]y)

do



Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)

do



Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)

do



Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)

do



Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)

do



Why KL?

e Variational Bayes
¢ = argmin,c oKL (¢(-)[[p(-[»))

KL (q(-)[|p(-]y))

p(0]y)

do



Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)

do



Why KL?

e Variational Bayes
¢ = argmin,c oKL (¢(-)[[p(-[»))

KL (q(-)[|p(-]y))

p(0]y)




Why KL?

e Variational Bayes

q" = argmin oKL (¢(-)|[p(-[y))

KL (g(-)[lp(-|y))
= [ atoy1os g
oo

p(0]y)




Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)




Why KL?

e Variational Bayes
¢ = argmin,c oKL (¢(-)[[p(-[»))

KL (q(-)[|p(-]y))

p(0]y)




Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)




Why KL?

e Variational Bayes
q" = argmingc oKL (¢(-)[|p(-|y))

KL (¢()[lp(-|y))

p(0]y)




Why KL?

0
e Variational Bayes p(0ly)

KL (¢()llp(-y))

p(0ly)
q@ply) ., (0, )
:/C](@) log (0.1) df = log p(y) _/q(g) log e 10

"Evidence lower
bound” (ELBO)



Why KL?

+ Variational Bayes POly)
q" = argmin, oKL (q(-)|[p(-]y)) FAR
KL (q(-)[[p(-[%))
= [ atoy1os g
= / q(0) log q}g?gi(j;) df = log p(y) — / q(0) log péié?;) df

‘Evidence lower
bound” (ELBO)



Why KL?

0
e Variational Bayes POly)
q¢" = argmin oKL (¢(-)|[p(-|y)) FAR

KL (q(-)[|p(-]y))

p(0]y)
qp(y) ,, p(0,y)
=/q(9) log (0.0 d<9—logp(y)—/q(9) log 10) do

"Evidence lower
» Exercise: Show KL > 0 @ishop2006,sec 1611 pound” (ELBO)



Why KL?

e Variational Bayes POly)
q" = argmin oKL (¢(-)[|p(:|y)) FAR
KL (g(-)l[p(-]»))
- [ at0yios G
— [ a(@y105 S5 W a0 togpty) ~ [ a(6)1og” 2 ap

"Evidence lower
» Exercise: Show KL > 0 @ishop2006,sec 1611 pound” (ELBO)

« KL > 0= logp(y) > ELBO



Why KL?

+ Variational Bayes POly)
¢ = argmin,c oKL (¢(-)[[p(-[»)) FAR
KL (¢()[p(-y))
= [ atoy1os s
— [ a(@y105 S5 W a0 togpty) ~ [ a(6)1og” 2 ap

"Evidence lower
» Exercise: Show KL > 0 @ishop2006,sec 1611 pound” (ELBO)

« KL > 0= logp(y) > ELBO
e ¢ = argmax, ,ELBO(g)

5



Why KL?

+ Variational Bayes POly)
¢ = argmin,c oKL (¢(-)[[p(-[»)) FAR
KL (¢()[p(-y))
= [ atoy1os s
— [ a(@y105 S5 W a0 togpty) ~ [ a(6)1og” 2 ap

"Evidence lower
» Exercise: Show KL > 0 @ishop2006,sec 1611 pound” (ELBO)

« KL > 0= logp(y) > ELBO
e ¢ = argmax, oELBO(q)

 Why KL (in this direction)?
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Variational Bayes ¢ = argmin, oKL (q()|p(-]y))

Choose “NICE” distributions

p(0ly)  Mean-field variational Bayes
AR (MFVB)

QMFVB = {q 1 q(0) = H (Jj(ej)}

» Often also exponential family

 Nota modeling assumption
— MFVB appjrox

Now we have an optimization

problem; how to solve it? |
* One option: Coordinate
descentin qi1,...,4J

[Bishop 2006]
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 Bayes & Approximate Bayes review
e What is:

e Variational Bayes (VB)

 Mean-field variational Bayes (MFVB)
 Why use VB?
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