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o Simplified from Meager (2019)

K =7 microcredit trials (Mexico, Mongolia, Bosnia, India,
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* Nk businesses in kth site (~900 to ~17K)
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e One setof 2500
MCMC draws:
45 minutes

« MFVB
optimization:
<1 min

Means
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MCMC (ground truth)

Criteo Online Ads Experiment

» Click-through conversion prediction

o Q: Will a customer (e.qg.) buy a product after clicking?

* Q: How predictive of conversion are different features?

e Logistic GLMM; N = 61,895 subset to compare to MCMC

11 |Giordano, Broderick, Meager, Huggins, Jordan 2016; Giordano, Broderick, Jordan 2018]
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The William Randolph Hearst Foundation will give 51.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Owur board felt that we had a
rcal opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social scrvices” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center's share will be $200,000 for its new building, which
will bouse young artists and provide new puoblic facilites The Metropolitan Opera Co. and
New York Philharmonic will reccive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250, 000, The Hearst Foundation, aleading supporter
of the Lincoln Center Consolidated Corporate l'und, will make its usual annual %100.000
donation, 1t0o0.

[Blei et al 2003]
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announcing the grants. Lincoln Center's share will be $200,000 for its new building, which
will bouse young, artists and provy de new [Hll‘lik facilities. The MCtl'OpOliiall Opt’:ra Co. and
New York Philharmonic will reccive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate !'und, will make its usual annual 100,000
donation, 1t0o0.
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