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Machine learning algorithm confirms 50 new
exoplanets in historic first

f in v - K by R. Dallon Adams in Innovation
o \ on August 26, 2020, 9:07 AM PST

A new machine learning technique can be used to sift through massive

datasets to discern exoplanets from false posiives.

O [https://www.techrepublic.com/article/machine-learning-algorithm-confirms-50-new-exoplanets-in-historic-first/]
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Machine learning algorithm confirms 50 new

exonlanets in histaric first
THE LANCET

Child & Adolescent Health

ARTICLES | ONLINE FIRST

A machine-learning algorithm for neonatal seizure recognition: a
multicentre, randomised, controlled trial

Andreea M Pavel, MD « Janet M Rannie, MD . Linda S de Vries, PhD « Mats Blennow, PhD « Adrienne Foran, MD
Divyen K Shah,MD . etal. Showallauthors

Published: August27,2020 . DOI: https://dci.org/10.1016/52352-4642(20)30239-X

") Check for updates

O [https://www.thelancet.com/journals/lanchi/article/Pl1S2352-4642(20)30239-X/fulltext]
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now dominates the docket

o [https://www.reuters.com/investigates/special-report/scotus/]
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= Forbes

Using Machine
Learning To Automate
Data Coding At The
Bureau Of Labor

AtA  Statistics (BLS)

nne Foran, MD

TOPTI=R: In

— F
resc 1le Kathleen Walch contributor
a COGNITIVE WORLD contributor Group ©
NOW a
y Joan EiskUpie '.“nh' En"wnrh‘. and Jonn Shiffman

O [https://www.forbes.com/sites/cognitiveworld/2020/08/01/using-machine-learning-to-automate-data-coding-at-the-bureau-of-labor-statistics-bls]
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IS Enterprise & Cloud
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O [https://www.forbes.com/sites/louiscolumbus/2020/08/12/5-ways-machine-learning-can-thwart-phishing-attacks]
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Machlne REUTERS  The Echo Chamber

exonland } = Forbes

T H E L/ A small group of law
5 Ways Machine

Child &
T.earnino Can Thwart

SCIENCE

Australian Federal Police officers trialled
controversial facial recognition tool Clearview Al

ARC Scinnee £ By tecnnelngy reparter Arel RBngle

Fosted Tue 4 Apr 2020 at 25d4am, apdaled Tue 14 Apr 2020 al 815300

TOPTI=R: In
success al gl
hoth reasnns

AtA
res( 4 in |
NOW '

By Joan EiskKUIpie '.—nn? H‘

T ETY T T

”‘. 3 :3./ ' ] ‘ A

O [https://www.abc.net.au/news/science/2020-04-14/clearview-ai-facial-recognition-tech-australian-federal-police/12146894]
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Fosled Tue |4 Ap
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success al gel
both reasnns.
f
1
AtA 7
— ~ ICICI Bank will use satellite images to assess the credit worthiness of

resc 1 in F farmers BCCL
NnoW :

- ICICI Bank's new machine learning (ML) algorithms
use satellite data and images to determine whether a
farmer is creditworthy or not.

5 [https://www.businessinsider.in/finance/banks/news/
icici-bank-is-looking-to-pump-out-more-kisan-credit-cards-with-satellite-data-and-machine-learning-at-its-side/articleshow/77741696.cms]
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Machlne REUTERS  The Echo Chamber

exonlana _
THE L/ A small group of lawyfiass

Child &
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SCIENCE
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contre¢

(W Tuoet
The challenge of predicting life’s
paths

Published online 3 April 2020

A mass collaboration of international researchers
demonstrates the pitfalls of using machine leaming to

tn reasnns

predict the lives that individuals may lead.

AtA

from data. (See the rest of the course!)
« Why study ML? To apply; to understand; to evaluate
 Notes: ML is not magic. ML is built on math.

[https://www.natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2020.46]
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Randomly sample (9(9'),.6’(()9))

set h9)(z) = h(z; 9<J'> 9“))

Ex_learning alg( 1 trillion) 6\6‘

W\
sSet = argmin ; <Z(71\” —o(O

Return hU') ‘(\\3(‘)
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|_earning a classifier

« Have data; have hypothesis class 2(3) -
 Want to choose a good classitier f

e Recall T =0 h |=p Y

e New:
D, =

learning

algorithm | —>

 Example:
for 7 =1, .., 1 trilliqn T
Randomly sample (9(9'),.6’(()9))
set h9)(z) = h(a; 9<J'> 9“))

Ex_learning alg( 1 trillion) é@ﬁ
Set — aremin 2(71“ / \@((\
J" I ;e rq ,k} ) Q2
(7%) %)
Return h V@Q

e How does training error of Ex learning alg(Dp;1)

o compare to the training error of Ex_learnlng_alg(Dn;Z)?



