

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? Ask on Discourse: discourse.odl.mit.edu

Materials: Will all be available at course website

Today's Plan

- I. (More) logistics
- II. Machine learning setup
- III. Linear classifiers

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? Ask on Discourse: discourse.odl.mit.edu

Materials: Will all be available at course website

Today's Plan

- I. (More) logistics
- II. Machine learning setup
- III. Linear classifiers

(set "Lecture 1" category)

Computer Science Prerequisites

Computer Science Prerequisites

Python programming

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

Math Prerequisites

 Matrix manipulations (inverse, transpose, multiplication, etc.)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients
- Basic discrete probability (random variables, independence, conditioning, etc.)

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients
- Basic discrete probability (random variables, independence, conditioning, etc.)

~	Welcome to 6.036
	Announcements
	Schedule Survey
	Basic Information
	Readiness Assessment
	Grading Policies
	Collaboration Policy
	Teaching Staff
	Software
	Numpy Tutorial
	Course calendar

Computer Science Prerequisites

- Python programming
- Algorithms (read & understand pseudocode)

- Matrix manipulations (inverse, transpose, multiplication, etc.)
- Points and planes in dimension > 2
- Gradients
- Basic discrete probability (random variables, independence, conditioning, etc.)

6.036/6.862: Introduction to Machine Learning

6.036/6.862: Introduction to Machine Learning, Staff

6.036/6.862: Introduction to Machine Learning, Staff

Instructors:

6.036/6.862: Introduction to Machine Learning, Staff

Instructors:

Teaching Assistants:

6.036/6.862: Introduction to Machine Learning, Staff

Instructors:

Teaching Assistants:

~	Welcome to 6.036
	Announcements
	Schedule Survey
	Basic Information
	Readiness Assessment
	Grading Policies
	Collaboration Policy
	Teaching Staff
	Software
	Numpy Tutorial
	Course calendar

• **Lecture** + course notes

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework
- Nanoquiz (no midterm/final)
 - Timed

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- **Lecture** + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework
- Nanoquiz (no midterm/final)
 - Timed
- Office hours

Week 1: Basics

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

- Lecture + course notes
- Exercises
 - Due 9am before lecture
- Lab (synchronous, required!)
 - (New!) MLyPod: 10 students
 - Work in groups of 2 to 3; check off with staff
- Homework
- Nanoquiz (no midterm/final)
 - Timed
- Office hours
- 6.862: project (canvas.mit.edu)

Week 1 Live Lecture

Introduction to ML

Linear classifiers

Week 1 Nanoquiz
NQ due Sep 4, 2020 16:00 EDT

Week 1 Lab
LAB due Sep 7, 2020 21:00 EDT

Homework 1

Machine learning (ML): why & what

Machine learning (ML): why & what

Machine learning (ML): why & what

Machine learning algorithm confirms 50 new exoplanets in historic first THE LANCET Child & Adolescent Health A new datase ARTICLES | ONLINE FIRST A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial Andreea M Pavel, MD • Janet M Rennie, MD • Linda S de Vries, PhD • Mats Blennow, PhD • Adrienne Foran, MD • Divyen K Shah, MD • et al. Show all authors Open Access • Published: August 27, 2020 • DOI: https://doi.org/10.1016/S2352-4642(20)30239-X • Check for updates

What is ML?

 What is ML? A set of methods for making decisions from data. (See the rest of the course!)

- What is ML? A set of methods for making decisions from data. (See the rest of the course!)
- Why study ML? To apply; to understand; to evaluate

- What is ML? A set of methods for making decisions from data. (See the rest of the course!)
- Why study ML? To apply; to understand; to evaluate
- Notes: ML is not magic. ML is built on math.

- What is ML? A set of methods for making decisions from data. (See the rest of the course!)
- Why study ML? To apply; to understand; to evaluate
- Notes: ML is not magic. ML is built on math.

What do we have?

What do we have? (Training) data

• *n* training data points

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we want?

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

How to label?

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

• Label $y^{(i)} \in \{-1, +1\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ... , (x^{(n)}, y^{(n)})\}$

What do we want? A good way to label new points

What do we have? (Training) data

- *n* training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

• Label $y^{(i)} \in \{-1, +1\}$ • Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ What do we want? A good way to label new points

The de the trailer in good way to labor now points

• How to label? Hypothesis $h: \mathbb{R}^d \to \{-1, +1\}$

• Example h: For any x, h(x) = +1

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

• Label $y^{(i)} \in \{-1, +1\}$

What do we want? A good way to label new points

- Example h: For any x, h(x) = +1
 - Is this a hypothesis?

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \ldots, n\}$
 - Feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

• Label $y^{(i)} \in \{-1, +1\}$

• Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})\}$

- Example h: For any x, h(x) = +1
 - Is this a good hypothesis?

Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

Math facts!

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

Math facts!

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

Math facts!

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!**

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** $x \cdot \theta x ||\theta|| \angle$

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!**

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!**

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that

label +1 on one side of a line and -1 on the other side **Math facts!**

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side Math facts! _inear classifier:

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

$$h(x) = \operatorname{sign}(\theta^{\top} x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 < 0 \end{cases}$$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

$$h(x) = \operatorname{sign}(\theta^{\top} x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 < 0 \end{cases}$$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

 Example H: All hypotheses that label +1 on one side of a line and -1 on the other side

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

7

• Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$

Linear classifiers

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** Linear classifier: $h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$ $+1 \text{ if } \theta^{\top} x + \theta_0 > 0$ $-1 \text{ if } \theta^{\top} x + \theta_0 \le 0$

Linear classifiers

 x_2 • Hypothesis class \mathcal{H} : set of $h \in \mathcal{H}$ • Example \mathcal{H} : All hypotheses that label +1 on one side of a line and -1 on the other side **Math facts!** Linear classifier: $h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$ $+1 \text{ if } \theta^{\top} x + \theta_0 > 0$ $-1 \text{ if } \theta^{\top} x + \theta_0 \le 0$ $\mathcal{H} = \text{set of all such } h$

• Should predict well on future data

• Should predict well on future data

 How good is a classifier at a single point?

• Should predict well on future data

 How good is a classifier at a single point?

Should predict well on future data

• How good is a classifier at a single point? Loss L(g,a)

Should predict well on future data

How good is a classifier at a single point? Loss L(g,a) g: guess,

Should predict well on future data

• How good is a classifier at a single point? Loss L(g,a) g: guess,

• Example: 0-1 loss

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g, a) g: guess,
 - Example: 0-1 loss a: actual

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

$$L(g, a) = \begin{cases} 1 \text{ if } g = 1, a = -1\\ 100 \text{ if } g = -1, a = 1\\ 0 \text{ else} \end{cases}$$

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss a: actual

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

• Example: asymmetric loss

$$L(g, a) = \begin{cases} 1 \text{ if } g = 1, a = -1\\ 100 \text{ if } g = -1, a = 1\\ 0 \text{ else} \end{cases}$$

• Test error (n' new points):

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a)|g:guess,|g:guess|
 - Example: 0-1 loss a: actual

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

• Example: asymmetric loss

$$L(g, a) = \begin{cases} 1 \text{ if } g = 1, a = -1 \\ 100 \text{ if } g = -1, a = 1 \\ 0 \text{ else} \end{cases}$$

• Example: asymmetric root $L(g,a)=\left\{\begin{array}{l} 1 \text{ if } g=1,a=-1\\ 100 \text{ if } g=-1,a=1\\ 0 \text{ else} \end{array}\right.$ Test error (n' new points): $\mathcal{E}(h)=\frac{1}{n'}\sum_{i=n+1}^{n+n'}L(h(x^{(i)}),y^{(i)})$

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss a: actual

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

$$L(g, a) = \begin{cases} 1 \text{ if } g = 1, a = -1 \\ 100 \text{ if } g = -1, a = 1 \\ 0 \text{ else} \end{cases}$$

- Example: asymmetric root $L(g,a)=\left\{\begin{array}{l} 1 \text{ if } g=1,a=-1\\ 100 \text{ if } g=-1,a=1\\ 0 \text{ else} \end{array}\right.$ Test error (n' new points): $\mathcal{E}(h)=\frac{1}{n'}\sum_{i=n+1}^{n+n'}L(h(x^{(i)}),y^{(i)})$
- Training error:

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss a: actual

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

$$L(g, a) = \begin{cases} 1 \text{ if } g = 1, a = -1 \\ 100 \text{ if } g = -1, a = 1 \\ 0 \text{ else} \end{cases}$$

- $L(g,a) = \begin{cases} 1 \text{ if } g=1, a=-1\\ 100 \text{ if } g=-1, a=1\\ 0 \text{ else} \end{cases}$ Test error (n'new points): $\mathcal{E}(h) = \frac{1}{n'} \sum_{i=n+1}^{n+n'} L(h(x^{(i)}), y^{(i)})$ Training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$

- Should predict well on future data
- How good is a classifier at a single point? Loss L(g,a) g: guess,
 - Example: 0-1 loss a: actual

$$L(g, a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

$$L(g, a) = \begin{cases} 1 & \text{if } g = 1, a = -1 \\ 100 & \text{if } g = -1, a = 1 \\ 0 & \text{else} \end{cases}$$

- $L(g,a) = \begin{cases} 1 \text{ if } g = 1, a = -1 \\ 100 \text{ if } g = -1, a = 1 \\ 0 \text{ else} \end{cases}$ Test error (n' new points): $\mathcal{E}(h) = \frac{1}{n'} \sum_{i=n+1}^{n+n'} L(h(x^{(i)}), y^{(i)})$
- Training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- Prefer h to \tilde{h} if $\mathcal{E}_n(h) < \mathcal{E}_n(h)$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$

• Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New:

- Have data; have hypothesis class
- Want to choose a good classifier

• New: D_n \longrightarrow learning algorithm $\longrightarrow h$

- Have data; have hypothesis class
- Want to choose a good classifier

• Have data; have hypothesis class

Want to choose a good classifier

• New: D_n \longrightarrow learning algorithm $\longrightarrow h$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$

• Have data; have hypothesis class

Want to choose a good classifier

• New: D_n \longrightarrow learning algorithm $\longrightarrow h$

• Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• New: D_n \longrightarrow learning algorithm $\longrightarrow h$

Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• New: D_n \longrightarrow learning algorithm $\longrightarrow h$

Example:

Have data; have hypothesis class

Want to choose a good classifier

• Recall: $x \longrightarrow h \longrightarrow y$

• New: D_n \longrightarrow learning algorithm $\longrightarrow h$

Example:

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$ Ex learning alg

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$ Ex learning alg (\mathcal{D}_n)

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$

Ex_learning_alg(\mathcal{D}_n ; k < 1 trillion)

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$

Ex_learning_alg(\mathcal{D}_n ; $k \leq 1$ trillion)

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$

 $\text{Ex_learning_alg(} \mathcal{D}_n; k \leq 1 \text{ trillion)}$ $\text{Set } j^* = \operatorname{argmin}_{j \in \{1, \dots, k\}} \mathcal{E}_n(h^{(j)})$ MyPerParameter

 x_2

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:

for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$

Ex_learning_alg(\mathcal{D}_n ; $k \le 1$ trillion) Set $j^* = \operatorname{argmin}_{j \in \{1, \dots, k\}} \mathcal{E}_n(h^{(j)})$ Return $h^{(j^*)}$

- Have data; have hypothesis class
- Want to choose a good classifier
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: D_n \longrightarrow learning algorithm $\longrightarrow h$
- Example:
 - for j = 1, ..., 1 trillion Randomly sample $(\theta^{(j)}, \theta_0^{(j)})$ Set $h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$
 - Ex_learning_alg(\mathcal{D}_n ; $k \leq 1$ trillion)

 Set $j^* = \operatorname{argmin}_{j \in \{1, \dots, k\}} \mathcal{E}_n(h^{(j)})$ Return $h^{(j^*)}$ low does training argument.
- How does training error of Ex_learning_alg(\mathcal{D}_n ;1) compare to the training error of Ex_learning_alg(\mathcal{D}_n ;2)?

