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( +1 ifHTZIZ‘——H() > ()
—1if 0 x+600 <0
 Hypothesis class H of all
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« Example learning algorithm (given hypotheses 1))
Ex learning alg(D,; k)

=

Oifg=a
1 else

\

Set j" = argmin ey k}gn(h(j)) [demo]
5 Return AV
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Initialize 65 =0
for t = 1 to T [i.e. True it either:
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& prediction is wrong
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C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
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Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (@*T;[;(Z)> -

16]
C. There exists R such that, for every )
we have ||| < R L A2
* Conclusion: Then the ++ +o | T 4
perceptron algorithm will + T =
make at most (R/v)? T — 7]
updates to 6. Once it goes T
through a pass of / without T - -
changes, the training error |- -

6 of its hypothesis will be O.
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e |f we're clever, we don't lose any flexibility

e (Classifier with offset

reRY 0RO, R
<
r:0'x+60,=0
>
o Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT
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e Can first convert to “expanded” feature space, then
apply theorem
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 What can we do”? See upcoming lectures!

3 [https://towardsdatascience.com/penguins-dataset-overview-iris-alternative-9453bb8c8d95, https://github.com/allisonhorst/palmerpenguins]
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