

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? discourse.odl.mit.edu ("Lecture 2" category)

Materials: Will all be available at course website

Last Time

- Machine learning setup
- II. Linear classifiers
- III. Learning algorithms

Today's Plan

- I. Perceptron algorithm
- II. Harder and easier linear classification
- III. Perceptron theorem

• A linear classifier:

 $h(x;\theta,\theta_0)$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0 \\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

• A linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

• Hypothesis class ${\cal H}$ of all linear classifiers

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

- Hypothesis class ${\cal H}$ of all linear classifiers
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

- Hypothesis class \mathcal{H} of all linear classifiers
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

A linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

- Hypothesis class \mathcal{H} of all linear classifiers
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

• Example learning algorithm (given hypotheses $h^{(j)}$)

A linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

- Hypothesis class \mathcal{H} of all linear classifiers
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$
• Example learning algorithm (given)

Return $h^{(j^*)}$

A linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$
$$= \begin{cases} +1 & \text{if } \theta^\top x + \theta_0 > 0\\ -1 & \text{if } \theta^\top x + \theta_0 \le 0 \end{cases}$$

- Hypothesis class \mathcal{H} of all linear classifiers
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$
• Example learning algorithm (given)

Set
$$j^* = \operatorname{argmin}_{j \in \{1, ..., k\}} \mathcal{E}_n(h^{(j)})$$

Return $h^{(j^*)}$

[demo]

 $x \cdot \theta = x + \theta = x + \theta = x \cdot \theta = x \cdot$

 $x \cdot \theta \cdot x + \theta \circ \Delta 0$

Perceptron

Perceptron (\mathcal{D}_n ; τ)

```
Perceptron ( \mathcal{D}_n ; \tau )
Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\mathsf{T}}
Initialize \theta_0 = 0
```

```
Perceptron(\mathcal{D}_n; \tau)
Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many Os?]
Initialize \theta_0 = 0
```

```
Perceptron ( \mathcal{D}_n ; \tau )   
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\mathsf{T}} [How many 0s?]   
   Initialize \theta_0 = 0   
   for t = 1 to \tau
```

```
Perceptron(\mathcal{D}_n; \tau)
Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\mathsf{T}} [How many 0s?]
Initialize \theta_0 = 0
for t = 1 to \tau
changed = False
```

```
Perceptron(\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\mathsf{T}} [How many Os?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
   changed = False
   for i = 1 to n
```

```
Perceptron ( \mathcal{D}_n ; \tau )  
Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]  
Initialize \theta_0 = 0  
for t = 1 to \tau  
changed = False  
for i = 1 to n  
if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
   changed = False
   for i = 1 to n
    if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

```
Perceptron ( \mathcal{D}_n ; \tau )  
Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]  
Initialize \theta_0 = 0  
for t = 1 to \tau  
changed = False  
for i = 1 to n  
if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

```
Perceptron ( \mathcal{D}_n ; \tau )  
Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]  
Initialize \theta_0 = 0  
for t = 1 to \tau  
changed = False  
for i = 1 to n  
if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
   changed = False
   for i = 1 to n
    if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
   changed = False
   for i = 1 to n
    if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

[i.e. True if either:

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

[i.e. True if either: A. point is not on the line & prediction is wrong

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
  Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
  Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
        if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
      if not changed
        break
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
      if not changed
        break
  Return \theta, \theta_0
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
  Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
      if not changed
        break
  Return \theta, \theta_0
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

What does an update do?

break

if not changed

Return θ, θ_0

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)}+\theta_0)\leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
     if not changed
```

break

Return θ, θ_0

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)}+\theta_0)\leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left(\theta_{\text{updated}}^{\top} x^{(i)} + \theta_{0, \text{updated}} \right)$$

```
Perceptron (\mathcal{D}_n; \tau)
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)}+\theta_0)\leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         \mathbf{if} \ y^{(i)}(\theta^\top x^{(i)} + \theta_0) \le 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         \mathbf{if} \ y^{(i)}(\theta^\top x^{(i)} + \theta_0) \le 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)}x^{(i)})^{\top}x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top}x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         \mathbf{if} \ y^{(i)}(\theta^\top x^{(i)} + \theta_0) \le 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         \mathbf{if} \ y^{(i)}(\theta^\top x^{(i)} + \theta_0) \le 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         \mathbf{if} \ y^{(i)}(\theta^\top x^{(i)} + \theta_0) \le 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)}+\theta_0)\leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)}+\theta_0)\leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
             changed = True
```

break

Return θ, θ_0

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

What does an update do? if not changed

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

= $y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \le 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

What does an update do? if not changed

break

Return θ, θ_0

 $y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$ $= y^{(i)}(\theta^{\top} \dot{x}^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} \dot{x}^{(i)} + 1)$ $= y^{(i)}(\theta^{\top} x^{(i)} + \theta_0) + (\|x^{(i)}\|^2 + 1)$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         \mathbf{if} \ y^{(i)}(\theta^\top x^{(i)} + \theta_0) \le 0
              Set \theta = \theta + y^{(i)}x^{(i)}
              Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (\|x^{(i)}\|^2 + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (\|x^{(i)}\|^2 + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)}x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (\|x^{(i)}\|^2 + 1)$$

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

if not changed

break

Return θ, θ_0

$$y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} x^{(i)} + 1)$$

$$= y^{(i)} (\theta^{\top} x^{(i)} + \theta_0) + (\|x^{(i)}\|^2 + 1)$$

Perceptron Algorithm

```
Perceptron ( \mathcal{D}_n ; \tau )
   Initialize \theta = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{\top} [How many 0s?]
   Initialize \theta_0 = 0
   for t = 1 to \tau
      changed = False
      for i = 1 to n
         if y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) \leq 0
             Set \theta = \theta + y^{(i)}x^{(i)}
             Set \theta_0 = \theta_0 + y^{(i)}
              changed = True
```

[i.e. True if either:

A. point is not on the line & prediction is wrong

B. point is on the line

C. initial step]

What does an update do?

if not changed

break

Return θ, θ_0

[demo]

 $y^{(i)} \left((\theta + y^{(i)} x^{(i)})^{\top} x^{(i)} + (\theta_0 + y^{(i)}) \right)$ $= y^{(i)}(\theta^{\top} \dot{x}^{(i)} + \theta_0) + (y^{(i)})^2 (x^{(i)} \dot{x}^{(i)} + 1)$

 $= y^{(i)}(\theta^{\top} x^{(i)} + \theta_0) + (\|x^{(i)}\|^2 + 1)$

• Definition: A training set \mathcal{D}_n is **linearly** separable if there exist θ, θ_0 such that, for every point index $i \in \{1, \dots, n\}$, we have $y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) > 0$

$$y^{(i)}(\theta^{\top} x^{(i)} + \theta_0) > 0$$

• Definition: A training set \mathcal{D}_n is **linearly** separable if there exist θ, θ_0 such that, for every point index $i \in \{1, \dots, n\}$, we have $y^{(i)}(\theta^{\top}x^{(i)} + \theta_0) > 0$

$$y^{(i)}(\theta^{\top} x^{(i)} + \theta_0) > 0$$

Math facts!

Math facts!

Math facts!

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- = projection of x^* on θ
- signed distance of line to origin

- = projection of x^* on θ
- signed distance of line to origin

$$= \frac{\theta^\top x^*}{\|\theta\|}$$

- = projection of x^* on θ
- signed distance of line to origin

$$= \frac{\theta^\top x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|}$$

- = projection of x^* on θ
- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

- The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:
 - = projection of x^* on θ
 - signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

- The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:
 - = projection of x^* on θ
 - signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

$$y^* \left(\frac{\dot{\theta}^\top x^* + \theta_0}{\|\theta\|} \right)$$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

$$y^* \left(\frac{\dot{\theta}^\top x^* + \theta_0}{\|\theta\|} \right)$$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

Definition: The margin of the labelled point (x^*, y^*) with respect to the hyperplane defined by θ, θ_0 is:

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• Definition: The margin of the training set \mathcal{D}_n with respect to 5 the hyperplane defined by θ, θ_0 is:

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

Definition: The margin of the labelled point (x^*, y^*) with respect to the hyperplane defined by θ, θ_0 is:

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• Definition: The margin of the training set \mathcal{D}_n with respect to the hyperplane defined by θ, θ_0 is: $i \in \{1, \dots, n\}$ $y^{(i)} \left(\frac{\theta^\top x^{(i)} + \theta_0}{\|\theta\|}\right)$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

Definition: The margin of the labelled point (x^*, y^*) with respect to the hyperplane defined by θ, θ_0 is:

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• Definition: The margin of the training set \mathcal{D}_n with respect to the hyperplane defined by θ, θ_0 is: $i \in \{1, \dots, n\}$ $y^{(i)} \left(\frac{\theta^\top x^{(i)} + \theta_0}{\|\theta\|}\right)$

• The signed distance from a hyperplane defined by θ, θ_0 to a point x^* is:

= projection of x^* on θ

- signed distance of line to origin

$$= \frac{\theta^{\top} x^*}{\|\theta\|} - \frac{-\theta_0}{\|\theta\|} = \frac{\theta^{\top} x^* + \theta_0}{\|\theta\|}$$

Definition: The margin of the labelled point (x^*, y^*) with respect to the hyperplane defined by θ, θ_0 is:

$$y^* \left(\frac{\theta^\top x^* + \theta_0}{\|\theta\|} \right)$$

• Definition: The margin of the training set \mathcal{D}_n with respect to $\min_{i \in \{1,...,n\}} y^{(i)} \left(\frac{\theta^\top x^{(i)} + \theta_0}{\|\theta\|} \right)$ the hyperplane defined by θ, θ_0 is:

• Assumptions:

• Assumptions:

Assumptions:

Assumptions:

Assumptions:

Assumptions:

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \dots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \ldots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \ldots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \ldots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

C. There exists R such that, for every $i \in \{1, \ldots, n\}$, we have $\|x^{(i)}\| \leq R$

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \dots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

C. There exists R such that, for every $i \in \{1, \dots, n\}$ we have $\|x^{(i)}\| \leq R$

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \ldots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

C. There exists R such that, for every $i \in \{1, \dots, n\}$

we have $\|x^{(i)}\| \leq R$

Assumptions:

- A. Our hypothesis class = classifiers with separating hyperplanes that pass through the origin (i.e. $\theta_0 = 0$)
- B. There exist θ^* and γ such that $\gamma > 0$ and, for every $i \in \{1, \ldots, n\}$, we have $y^{(i)}\left(\frac{\theta^{*\top}x^{(i)}}{\|\theta\|}\right) > \gamma$

C. There exists R such that, for every $i \in \{1, \dots, n\}$, we have $\|x^{(i)}\| \leq R$

• **Conclusion**: Then the perceptron algorithm will make at most $(R/\gamma)^2$ updates to θ . Once it goes through a pass of i without changes, the training error of its hypothesis will be 0.

If we're clever, we don't lose any flexibility

- If we're clever, we don't lose any flexibility
 - Classifier with offset

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$

$$x: \theta^{\top} x + \theta_0 = 0$$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$

 $x : \theta^\top x + \theta_0 = 0$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$

 $x : \theta^\top x + \theta_0 = 0$

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

 $x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^\top, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^\top$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$

 $x : \theta^\top x + \theta_0 = 0$

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

$$x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^{\top}, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^{\top}$$

$$x_{\text{new}, 1:d} : \theta_{\text{new}}^{\top} x_{\text{new}} = 0$$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$
$$x : \theta^\top x + \theta_0 = 0$$

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

$$x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^\top, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^\top$$

$$x_{\text{new}, 1:d} : \theta_{\text{new}}^\top x_{\text{new}} = 0$$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$
$$x : \theta^\top x + \theta_0 = 0$$

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

$$x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^{\top}, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^{\top}$$

$$x_{\text{new}, 1:d} : \theta_{\text{new}}^{\top} x_{\text{new}} = 0$$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$
$$x : \theta^\top x + \theta_0 = 0$$

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

$$x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^\top, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^\top$$

$$x_{\text{new}, 1:d} : \theta_{\text{new}}^\top x_{\text{new}} \stackrel{\leq}{=} 0$$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$

 $x : \theta^\top x + \theta_0 \leq 0$

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

$$x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^\top, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^\top$$

$$x_{\text{new}, 1:d} : \theta_{\text{new}}^\top x_{\text{new}} \stackrel{\leq}{=} 0$$

- If we're clever, we don't lose any flexibility
 - Classifier with offset

$$x \in \mathbb{R}^d, \theta \in \mathbb{R}^d, \theta_0 \in \mathbb{R}$$
$$x : \theta^\top x + \theta_0 \stackrel{\leq}{=} 0$$

Classifier without offset

$$x_{\text{new}} \in \mathbb{R}^{d+1}, \theta_{\text{new}} \in \mathbb{R}^{d+1}$$

$$x_{\text{new}} = [x_1, x_2, \dots, x_d, 1]^\top, \theta_{\text{new}} = [\theta_1, \theta_2, \dots, \theta_d, \theta_0]^\top$$

$$x_{\text{new}, 1:d} : \theta_{\text{new}}^\top x_{\text{new}} \stackrel{\leq}{=} 0$$

 Can first convert to "expanded" feature space, then apply theorem

Typical real data sets aren't linearly separable

Typical real data sets aren't linearly separable [demo]

Typical real data sets aren't linearly separable [demo]

What can we do?

Typical real data sets aren't linearly separable [demo]

What can we do? See upcoming lectures!

Binary/two-class classification

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$ • Example: linear classification x_1

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$ Example: linear classification x_1
- Multi-class classification:

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$ Example: linear classification x_1
- Multi-class classification:
 - > 2 label values

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Multi-class classification:
> 2 label values

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Classification

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Regression

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification:
 - Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

- Multi-class classification:
 - > 2 label values

• Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Classification:

 Learn a mapping to
 a discrete set

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

 x_1

Example: linear classification

Supervised learning

Classification:

 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

 x_1

- Supervised learning: Learn a mapping from features to labels
- Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Supervised learning: Learn a mapping from features to labels

 Unsupervised learning

• Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:

 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

- Supervised learning: Learn a mapping from features to labels
- Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$
- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

- Unsupervised learning: No labels; find patterns
- Classification:

 Learn a mapping to
 a discrete set

