AND COMPUTER SCIENCE

®EECs 6.036/6.862: Introduction to
éliECTRICALENGINEERING MaCh|ne Learn|ng

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: in

roml.odl.mit.edu

Who’s talking? Pro

. Tamara Broderick

Questions? discourse.odl.mit.edu (“Lecture 2” category)
Materials: Will all be available at course website

Last Time

. Linear classitiers
|. Learning algorith

Today’s Plan

Machine learning setup . Perceptron algorithm

|. Harder and easier
ms inear classification

lll. Perceptron theorem

Recall: Classifiers

Recall: Classifiers

A linear classifier:
h(ﬂ?, ‘97 (90)

Recall: Classifiers

A linear classifier:
h(z;0,00) = sign(8' « + ;)

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

) —1if6Tz+6, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

) —1if6Tz+6, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

) —1if6Tz+6, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

) —1if6Tz+6, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:

h(z;0,00) = sign(8' « + ;)
[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\.

Recall: Classifiers
A linear classifier:
h(z;0,00) = sign(8' « + ;)

[+1if 0"z +60y >0

=) —1if6T 246, <0

\

Recall: Classifiers

* A linear classifier:
h(z;0,00) = sign(8' « + ;)
(10 'z + 09 >0
| —1if 0z 46y <0
 Hypothesis class H of all
inear classifiers

=

Recall: Classitiers

 Alinear classifier:

h(z;0,00) = sign(8' « + ;)

[+1if0'x+60; >0

—1if 0 x+600 <0

 Hypothesis class H of all

iInear classitiers

e 0-1Loss
L(g,a) =«

=

(Qifg=a
1 else

\

Recall: Classitiers

 Alinear classifier:

h(z;0,00) = sign(8' « + ;)

[+1if0'x+60; >0

—1if 0 x+600 <0

 Hypothesis class H of all

iInear classitiers

e 0-1Loss
L(gv) = <

. Tralnmg error

=

(Qifg=a
1 else

\

n

Z L(h (’L)

(@)

Recall: Classifiers

* Alinear classifier:
h(z;0,00) = sign(8' « + ;)
(+1 ifHTZIZ‘——H() > ()
—1if 0 x+600 <0
 Hypothesis class H of all
inear classifiers
e O-1Loss
L(g,a) = <

* [raining errolr .
(h) = = L(h(x()) 4,
Enlh) = 5 > L),)

» Example learning algorithm (given hypotheses k(%))

=

Oifg=a
1 else

\

Recall: Classifiers

* Alinear classifier:
h(z;0,00) = sign(8' « + ;)
(+1 ifHTZIZ‘——H() > ()
—1if 0 x+600 <0
 Hypothesis class H of all
inear classifiers
e O-1Loss
L(g,a) = <

* [raining errolr .
(h) = = L(h(x()) 4,
Enlh) = 5 > L),)

« Example learning algorithm (given hypotheses 1))
Ex learning alg(D,; k)

=

Oifg=a
1 else

\

Set j* = argmin ey 43 En(hY)
5 Return hU")

Recall: Classifiers

* Alinear classifier:
h(z;0,00) = sign(8' « + ;)
(+1 ifHTZIZ‘——H() > ()
—1if 0 x+600 <0
 Hypothesis class H of all
inear classifiers
e O-1Loss
L(g,a) = <

* [raining errolr .
(h) = = L(h(x()) 4,
Enlh) = 5 > L),)

« Example learning algorithm (given hypotheses 1))
Ex learning alg(D,; k)

=

Oifg=a
1 else

\

Set j" = argmin ey k}gn(h(j)) [demo]
5 Return AV

Perceptron Algorithm

Perceptron Algorithm

Perceptron

Perceptron Algorithm

Perceptron (D, ; T)

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]'
Initialize 65 =0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to 7T
changed = False
for 1 = 1 to n

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False
for 1 = 1 to n
if y WOz 46y) <0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False
for 1 = 1 to n
if yWOT 2z 4 6p) <0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False
for 1 = 1 to n
if y WOz 4+64) <0

Perceptron Algorithm

Perceptron (D, ; T)
Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T
changed = False
for 1 = 1 to n
if yWOT 2z 4 6p) <0

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

changed = False
for 1 = 1 to n

if yW(OTz® 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line

changed = False VR
& prediction is wrong

for 1 = 1 to n
if yW(OTz® 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong
B. point is on the line

changed = False

for 1 = 1 to n
if yW(OTz® 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong
B. point is on the line

changed = False

for 1 = 1 to n
if yWOT 2" 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False

for 1 = 1 to n
if yW(OTz® 4 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False

for 1 = 1 to n
if yWOT 2z 4+ 6y) <0

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =0+ y Wz
Set 6y =0y +y'”

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =0+ y Wz
Set 6y =0y +y'”
changed = True

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =0+ y Wz
Set 6y =0y +y'”
changed = True

1f not changed
break

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =0+ y Wz
Set 6y =0y +y'”
changed = True

1f not changed
break
Return 46,6,

3

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set =6+ yHg
Set 6y =0 +y'”
changed = True

1f not changed
break
Return 46,6,

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set =04 y@z®
Set 6y =6 +y
changed = True

if not changed What does an update do?

break
Return 6,06,

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =60+ y(i)x(i)
Set g =6y + y™
changed = True

if not changed What does an update do?

break
Return 6,06,

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?

break
Return 6,06,

3

Perceptron Algorithm

Perceptron (D, ; T)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False

for 1 = 1 to n
if yWO 2D +6) <0
Set =0+ y®z®
Set @y = 0 + y”
changed = True

if not changed What does an update do?

break y(Z) (Ql—ll_pdated x(Z) T HO,updated)
Return 46,6,

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed | What dc.)es.an update do? |
break yV ((6’ + W) T2 1 (g + y(z)))
Return 6,0,

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(z))Q(x(Z)Tx(Z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ + y(i)x(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(l))Q(x(Z)Tx(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ + y(i)x(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTQ;‘(Z) + 6’0) e (y(l))Q(x(Z)Tx(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ + y(i)aﬁ(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(l))Q(x(Z)Tx(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ + y(i)aﬁ(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(Z))Q(aj(z)Tx(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ —+ y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(z))Q(x(Z)Tx(Z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ —+ y(i)x(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(l))Q(x(Z)Tx(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ + W) T (9 + y(’)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(z))Q(x(Z)Tx(Z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break e ((6’ + W) T (9 + y(’))>
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(z))Z(x(Z)Taj(Z) =l 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y'V ((6’ + y(i)x(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTQ;‘(Z) + 6’0) e (y(l))Q(x(Z)Tx(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)x(i))Tx(i) + (6p + y(i))>
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(Z))Q(aj(z)Tx(z) 4 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(z))Q(x(Z)Tx(Z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(z))Z(lE(Z)TlE(Z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, (90 — y(z) (HTZE(Z) + 6’0) e (y(Z))Q(w(Z)TQj(z) + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, 00 y(z) (HTZE(Z) 1 90) e (y(z))Q(x(Z)TlE(Z) 4 1)
y DO 2D + 00) + (||zD2 + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if g0 2" 4+ 6y) < 0
Set =0+ g
Set @y = 0 + y”
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)az(i))Tx(i) + (6p + y(i)))
Return (9, 00 y(z) (HTZE(Z) 1 90) e (y(z))Q(x(Z)TlE(Z) 4 1)
y DO 2D + 60) + (2D + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =60+ y(i)x(i)
Set g =6y + y™
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)x(i))Tx(i) + (6p + y(i)))
Return 0,0, y DO 2D +00) + (Y2 (DT 4+ 1)
y DO 2D + 00) + (||zD2 + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =60+ y(i)x(i)
Set g =6y + y™
changed = True

if not changed What does an update do?
break y ((6’ + y(i)x(i))Tx(i) + (6p + y(i)))
Return 0,0, y DO 2D +00) + (Y2 (DT 4+ 1)
y DO 2D + 00) + (||zD2 + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =60+ y(i)x(i)
Set g =6y + y™
changed = True

if not changed What does an update do?
break y' ((6’ + y(i)x(i))Tx(i) + (6p + y(i)))
Return 0,0, y DO 2D +00) + (Y2 (DT 4+ 1)
y DO 2D + 00) + (||zD2 + 1)

3

Perceptron Algorithm

Perceptron (D, ; 7)

Initialize 6=1[00 ... 0]' [How many 0s?]
Initialize 65 =0
for t = 1 to T [i.e. True it either:

A. point is not on the line
& prediction is wrong

B. point is on the line

C. initial step]

changed = False
for 1 = 1 to n
if yW(OTz® 4 6y) <0
Set 0 =60+ y(i)x(i)
Set g =6y + y™
changed = True

if not changed What does an update do?
break y ((9 + W) T2+ (60 + y(i)))
Return 0,0, y DO 2D +00) + (Y2 (DT 4+ 1)
3 [demoO] vy DO 2D +09) + (|l2@ 2 + 1)

| et’'s Talk About Classifier Quality

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y (072D +6y) >0

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classitier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,60y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classifier Quality

o Definition: A training set D,, is linearly
separable if there exist 0,0y such that, for
every point index ¢ € {1,...,n}, we have

y DO 2D +6y) >0

| et’'s Talk About Classifier Quality

"t

| et’'s Talk About Classifier Quality

| et’'s Talk About Classifier Quality

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

= projection of " on

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

= projection of " on
— signed distance of line to origin

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

= projection of " on
— signed distance of line to origin
_HTx*

16]

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

= projection of " on
— signed distance of line to origin
_(9TQZ‘* —9()

|3 (]

L et’s Talk About Classifier Quality

* The signed distance from a
hyperplane defined by 6, 0y to a
point x™ is:

= projection of " on
— signed distance of line to origin
_(9T33* —(9() B QTZE* -+ 9()

|3 (] 16]

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

= projection of " on
— signed distance of line to origin
_GTZE* —6)() B @TZU* -+ 9()

11 110]] 19|

* Definition: The margin of the
labelled point (z*, y™) with respect
to the hyperplane defined by 4, §, is:

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

= projection of " on
— signed distance of line to origin
_GTZE* —90 B @TZU* -+ 9()

11 110]] 19|

* Definition: The margin of the
labelled point (z*, y™) with respect
to the hyperplane defined by 4, §, is:

y* (HTQZ‘* -+ (90)
19]]

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a
ooint =™ is:

= projection of " on
— signed distance of line to origin
_QTZE* —6)0 B QTZU* -+ 9()

|3] 19|

* Definition: The margin of the
labelled point (z*, y™) with respect
to the hyperplane defined by 4, §, is:

y* (HTLE* -+ (90)
19]]

| et’s Talk About Classifier Quality

Math facts!

B O x* + 6
10]
— ~ — — * Definition: The margin of the

— — — labelled point (=™, y™) with respect
to the hyperplane defined by 9, 9, Is:

" (HTLIZ‘* -+ 90)
Y
19]]

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a

noint ™ is:
= projection of " on

— signed distance of line to origin
_GTZE* —6)() B @TZU* -+ 9()
= 101 110]] 19|

* Definition: The margin of the
— — — labelled point (=™, y™) with respect
to the hyperplane defined by 4, §, is:

y* (HTQZ‘* -+ (90)
19]]

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a

noint ™ is:
= projection of " on

— signed distance of line to origin
_GTZE* —6)() B @TZU* -+ 9()
= 101 110]] 19|

Definition: The margin of the
labelled point (z*, y™) with respect
to the hyperplane defined by 4, §, is:

y* (HTQZ‘* -+ (90)
19]]

. __—___@_ .

L et’s Talk About Classifier Quality

* The signed distance from a
nyperplane defined by 6,6y to a

noint ™ is:
= projection of " on

— signed distance of line to origin
_GTZE* —6)() B @TZU* -+ 9()
= 101 110]] 19|

-~ — @ * Definition: The margin of the
— —— labelled point (z*, y™) with respect
to the hyperplane defined by 4, §, is:

y* (HTQZ‘* -+ (90)
19]]

| et’s Talk About Classifier Quality

Math facts!

B QTQIZ‘* -+ (9()

i 1]

Definition: The margin of the
labelled point (z*, y™) with respect
to the hyperplane defined by 9, 9, Is:

" (HTLIZ‘* -+ 90)
Y
16]
* Definition: The margin of the

training set D,, with respect to
5 the hyperplane defined by 6,0y is:

pe°

*
_— ®

| et’s Talk About Classifier Quality

Math facts!

B QTQIZ‘* -+ (9()
. 10|
Definition: The margin of the

labelled point (z*, y™) with respect
to the hyperplane defined by 9, 9, Is:

" (HTLIZ‘* -+ 90)
Y
19]]

» Definition: The margin of the ” (QTQ;(Z') 1 90>
n}

pe°

*

training set D,, with respectto min 9]
5 the hyperplane defined by 6,0y is:

| et’s Talk About Classifier Quality

Math facts!

B QTQIZ‘* -+ (9()
. 10|
e Definition: The margin of the

— — — labelled point (=™, y™) with respect
to the hyperplane defined by 9, 9, Is:

" (HTLIZ‘* -+ 90)
Y
19]]

» Definition: The margin of the ” (QTQ;(Z') 1 90>
n}

training set D,, with respectto min 9]
5 the hyperplane defined by 6,0y is:

| et’s Talk About Classifier Quality

Math facts!

B QTQIZ‘* -+ (9()
. 10|
e Definition: The margin of the

— — — labelled point (=™, y™) with respect
to the hyperplane defined by 9, 9, Is:

" (HTLIZ‘* -+ 90)
Y
19]]

» Definition: The margin of the ” (QTQ;(Z') 1 90>
n}

training set D,, with respectto min 9]
5 the hyperplane defined by 6,0y is:

Theorem: Perceptron Performance

Theorem: Perceptron Performance

 Assumptions:

Theorem: Perceptron Performance

 Assumptions:

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (@*T;{;(Z)> -

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (Q*T;{;(Z)> -

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (Q*T;{;(Z)> -

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for

every i € {1,...,n}, we have o (H*Tg;(Z) -
16]]

C. There exists R such that, for everyi € {1,...,n},
we have ||| < R

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (@*T;{;(Z)> -

16]]
C. There exists R such that, for every)
we have ||| < R L A2
+ 7]+
+ .t .
+T —

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (@*T;{;(Z)> -

16]]
C. There exists R such that, for every)
we have ||| < R L A2
+ 7]+
+ .t .
+T —

Theorem: Perceptron Performance

 Assumptions:
A. Our hypothesis class = classitiers with separating
hyperplanes that pass through the origin (i.e. 8g = 0)

B. There exist 6 and v such that v >0 and, for
every ¢ € {1,...,n}, we have 40 (@*T;[;(Z)> -

16]
C. There exists R such that, for every)
we have ||| < R L A2
* Conclusion: Then the ++ +o | T 4
perceptron algorithm will + T =
make at most (R/v)? T — 7]
updates to 6. Once it goes T
through a pass of / without T - -
changes, the training error |- -

6 of its hypothesis will be O.

Why classifiers through the origin®

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset
reRY 0RO, R

r:0'x+60,=0

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset
reRY 0RO, R

r:0'x+60,=0

e (Classifier without offset

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset
reRY 0RO, R

r:0'x+60,=0
e (Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

Lnew — [33173327 .oy d,]-]T?Hnew — [917927 . °79d700]—r

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset
reRY 0RO, R

r:0'x+60,=0
e (Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

Lnew — [33173327 .oy d,]-]T?Hnew — [917927 . °79d700]—r

.ol _
xnew,l:d . Qnewxnew =0

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset
reRY 0RO, R

r:0'x+60,=0
e (Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

Lnew — [33173327 .oy d,]-]T?Hnew — [917927 . °79d700]—r

.ol o
xnew,l:d . Qnewxnew = ()

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset
reRY 0RO, R

<
r:0'x+60,=0
e (Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

Lnew — [33173327 .oy d,]-]T?Hnew — [917927 . °79d700]—r

<
.ol =
xnew,l:d . Qnewxnew =0

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset

reRY 0RO, R
<
r:0"'x+60,=0
>
o Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

Lnew — [33173327 .oy d,]-]T?Hnew — [917927 . °79d700]—r

<
.ol —
xnew,l:d . Qnewxnew ; 0

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset

reRY 0RO, R
<
r:0'x+60,=0
>
o Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

Lnew — [33173327 .oy d,]-]T?Hnew — [917927 . °79d700]—r

<
.ol —
xnew,l:d . Qnewxnew ; 0

Why classifiers through the origin®

e |f we're clever, we don't lose any flexibility

e (Classifier with offset

reRY 0RO, R
<
r:0'x+60,=0
>
o Classifier without offset

d-+1 d-+1
Tnew € R, Ohew € RYT

T T
Lnew — [331,.113‘2, ... Ld, 1] ,Hnew — [(91, (92, coe (9d, 90]
<
.ol _
xnew,l:d . Qnewxnew ; 0

e Can first convert to “expanded” feature space, then
apply theorem

Problem: data not linearly separable

* [Jypical real data sets aren't linearly separable

Penguin size, Palmer Station LTER
Flipper length and body mass for Adelie, Chinstrap and Gentoo Penguins

u |

6000
—~ 5000 , ,
o Penguin species
w
é Adelie
- A Chinslrap
©
(.'8 B Gentoo

4000

3000

170 180 190 200 210 220 230

Flipper length (mm)

3 [https://towardsdatascience.com/penguins-dataset-overview-iris-alternative-9453bb8c8d95, https://github.com/allisonhorst/palmerpenguins]

Problem: data not linearly separable

* Jypical real data sets aren't linearly separable [demoO]

Penguin size, Palmer Station LTER
Flipper length and body mass for Adelie, Chinstrap and Gentoo Penguins

u |

6000
—~ 5000 . .
o Penguin species
w
é Adelie
- A Chinslrap
©
(.'8 B Gentoo

4000

3000

170 180 190 200 210 220 230
Flipper length (mm)

3 [https://towardsdatascience.com/penguins-dataset-overview-iris-alternative-9453bb8c8d95, https://github.com/allisonhorst/palmerpenguins]

Problem: data not linearly separable

* Jypical real data sets aren't linearly separable [demoO]

Penguin size, Palmer Station LTER
Flipper length and body mass for Adelie, Chinstrap and Gentoo Penguins

u |

6000
—~ 5000 . .
o Penguin species
&
g Adelie
~— A Chinslrap
©
(8 B Gentoo

4000

3000

A
F 3
170 180 190 200 210 220 230

Flipper length (mm)

 \What can we do?

3 [https://towardsdatascience.com/penguins-dataset-overview-iris-alternative-9453bb8c8d95, https://github.com/allisonhorst/palmerpenguins]

Problem: data not linearly separable

* Jypical real data sets aren't linearly separable [demoO]

Penguin size, Palmer Station LTER
Flipper length and body mass for Adelie, Chinstrap and Gentoo Penguins

u |

6000
—~ 5000 . .
o Penguin species
&
g Adelie
~ A Chinslrap
©
‘% B Gentoo

4000

3000

170 180 190 200 210 220 230

Flipper I.éngth (mm)

 What can we do”? See upcoming lectures!

3 [https://towardsdatascience.com/penguins-dataset-overview-iris-alternative-9453bb8c8d95, https://github.com/allisonhorst/palmerpenguins]

Machine Learning lasks

Machine Learning lasks

* Binary/two-class classification

Machine Learning lasks

* Binary/two-class classification:
Learn a mapping: R — {—1,+1}

Machine Learning lasks

* Binary/two-class classification:
Learn a mapping: R — {—1,+1}

Machine Learning lasks

* Binary/two-class classification:
Learn a mapping: R* — {—1, +1}

 Example: linear classification

+ 4 ———= — +++H

Machine Learning lasks

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

 Example: linear classification

Machine Learning lasks

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

 Classification

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

 Classification:
Learn a mapping to
a discrete set

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

 Regression * Classification:
Learn a mapping to
a discrete set

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

 Regression: Learn a mapping * Classification:
to continuous values: RY — R” Learn a mapping to
a discrete set

* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

 Regression: Learn a mapping * Classification:
to continuous values: RY — R” Learn a mapping to
a discrete set

L1
* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

 Regression: Learn a mapping '+ Classification:
to continuous values: RY — R” Learn a mapping to
a discrete set

L1
* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

» Supervised learning

 Regression: Learn a mapping * Classification:
to continuous values: RY — R” Learn a mapping to
a discrete set

L1
* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

» Example: linear classification > 2 label values

Machine Learning lasks

* Supervised learning: Learn a
mapping from features to

labels
 Regression: Learn a mapping * Classification:
to continuous values: RY — R” Learn a mapping to
a discrete set
L1
* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

« Example: linear classification > 2 label values

Machine Learning lasks

* Supervised learning: Learn a * Unsupervised
mapping from features to learning
labels

 Regression: Learn a mapping * Classification:
to continuous values: RY — RF Learn a mapping to

a discrete set

L]
* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

« Example: linear classification > 2 label values

Machine Learning lasks

* Supervised learning: Learn a * Unsupervised
mapping from features to learning: No labels;
labels find patterns

 Regression: Learn a mapping * Classification:
to continuous values: RY — RF Learn a mapping to

a discrete set

L]
* Binary/two-class classification: Multi-class
Learn a mapping: R* — {—1, +1} classification:

« Example: linear classification > 2 label values

