

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? discourse.odl.mit.edu ("Lecture 3" category)

Materials: Will all be available at course website

Last Time(s)

- I. Linear classifiers
- II. Perceptron algorithm
- III. Linear separability
- IV. Perceptron theorem

Today's Plan

- I. A more-complete ML analysis
- II. Choosing good features
- III. Evaluation

• Linear classifier *h*

• 0-1 Loss
$$L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$$

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

A more-complete ML analysis

1. Establish a goal & find data

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information
- 2. Encode data in useful form for the ML algorithm

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information
- 2. Encode data in useful form for the ML algorithm
- 3. Run the ML algorithm & return a classifier

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information
- 2. Encode data in useful form for the ML algorithm
- 3. Run the ML algorithm & return a classifier
 - Example algorithms:

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information
- 2. Encode data in useful form for the ML algorithm
- 3. Run the ML algorithm & return a classifier
 - Example algorithms: (A) choose best classifier from a finite list; (B) perceptron; (C) averaged perceptron

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information
- 2. Encode data in useful form for the ML algorithm
- 3. Run the ML algorithm & return a classifier
 - Example algorithms: (A) choose best classifier from a finite list; (B) perceptron; (C) averaged perceptron
- 4. Interpretation & evaluation

First, need goal & data.

 First, need goal & data. E.g. diagnose whether people have heart disease based on their available information

 First, need goal & data. E.g. diagnose whether people have heart disease based on their available information

	has heart disease?	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	no	55	no	nurse	pain	40s	133000
2	no	71	no	admin	beta blockers, pain	20s	34000
3	yes	89	yes	nurse	beta blockers	50s	40000
4	no	67	no	doctor	none	50s	120000

- First, need goal & data. E.g. diagnose whether people have heart disease based on their available information
- Next, put data in useful form for learning algorithm

	has heart disease?	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	no	55	no	nurse	pain	40s	133000
2	no	71	no	admin	beta blockers, pain	20s	34000
3	yes	89	yes	nurse	beta blockers	50s	40000
4	no	67	no	doctor	none	50s	120000

- First, need goal & data. E.g. diagnose whether people have heart disease based on their available information
- Next, put data in useful form for learning algorithm

	has heart disease?	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	no	55	no	nurse	pain	40s	133000
2	no	71	no	admin	beta blockers, pain	20s	34000
3	yes	89	yes	nurse	beta blockers	50s	40000
4	no	67	no	doctor	none	50s	120000

- First, need goal & data. E.g. diagnose whether people have heart disease based on their available information
- Next, put data in useful form for learning algorithm

	has heart disease?	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	no	55	no	nurse	pain	40s	133000
2	no	71	no	admin	beta blockers, pain	20s	34000
3	yes	89	yes	nurse	beta blockers	50s	40000
4	no	67	no	doctor	none	50s	120000

- First, need goal & data. E.g. diagnose whether people have heart disease based on their available information
- Next, put data in useful form for learning algorithm

	has heart disease?	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	no	55	no	nurse	pain	40s	133000
2	no	71	no	admin	beta blockers, pain	20s	34000
3	yes	89	yes	nurse	beta blockers	50s	40000
4	no	67	no	doctor	none	50s	120000

	has heart disease?
1	no
2	no
3	yes
4	no

Identify the labels and encode as real numbers

 Depending on your algorithm, might instead use {0,1}

- Depending on your algorithm, might instead use {0,1}
- Save mapping to recover predictions of new points

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	no	nurse	pain	40s	133000
2	71	no	admin	beta blockers, pain	20s	34000
3	89	yes	nurse	beta blockers	50s	40000
4	67	no	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	no	nurse	pain	40s	133000
2	71	no	admin	beta blockers, pain	20s	34000
3	89	yes	nurse	beta blockers	50s	40000
4	67	no	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

		resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
$(x^{(1)})^{\top}$	1	55	no	nurse	pain	40s	133000
	2	71	no	admin	beta blockers, pain	20s	34000
	3	89	yes	nurse	beta blockers	50s	40000
	4	67	no	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	no	nurse	pain	40s	133000
2	71	no	admin	beta blockers, pain	20s	34000
3	89	yes	nurse	beta blockers	50s	40000
4	67	no	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	no	nurse	pain	40s	133000
2	71	no	admin	beta blockers, pain	20s	34000
3	89	yes	nurse	beta blockers	50s	40000
4	67	no	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	no	nurse	pain	40s	133000
2	71	no	admin	beta blockers, pain	20s	34000
3	89	yes	nurse	beta blockers	50s	40000
4	67	no	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	0	nurse	pain	40s	133000
2	71	Ο	admin	beta blockers, pain	20s	34000
3	89	1	nurse	beta blockers	50s	40000
4	67	0	doctor	none	50s	120000

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	0	nurse	pain	40s	133000
2	71	0	admin	beta blockers, pain	20s	34000
3	89	1	nurse	beta blockers	50s	40000
4	67	Ο	doctor	none	50s	120000

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}
nurse	0	0	0
admin	0	O	1
pharmacist	0	1	0
doctor	0	1	1
social worker	1	0	0

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}
nurse	0	0	0
admin	0	O	1
pharmacist	0	1	0
doctor	0	1	1
social worker	1	0	0

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}
nurse	0	0	0
admin	0	0	1
pharmacist	0	1	0
doctor	0	1	1
social worker	1	0	0

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}
nurse	0	0	0
admin	0	O	1
pharmacist	0	1	0
doctor	0	1	1
social worker	1	0	0

Idea: turn each category into own unique 0-1 feature

• Idea: turn each category into own unique 0-1 feature

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}	ϕ_{d+4}
nurse	1	0	0	0	0
admin	0	1	0	0	0
pharmacist	0	O	1	0	0
doctor	0	O	0	1	0
social worker	0	0	0	0	1

Idea: turn each category into own unique 0-1 feature

Idea: turn each category into own unique 0-1 feature

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}	ϕ_{d+d}
nurse	1	0	0	0	0
admin	0	1	0	0	0
pharmacist	0	O	1	0	0
doctor	0	O	0	1	0
social worker	0	0	O	0	1

• "one-hot encoding"

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	0	nurse	pain	40s	133000
2	71	0	admin	beta blockers, pain	20s	34000
3	89	1	nurse	beta blockers	50s	40000
4	67	0	doctor	none	50s	120000

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	medicines	age	family income (USD)
1	55	0	1,0,0,0,0	pain	40s	133000
2	71	Ō	0,1,0,0,0	beta blockers, pain	20s	34000
3	89	1	1,0,0,0,0	beta blockers	50s	40000
4	67	0	0,0,0,1,0	none	50s	120000

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5		age	family income (USD)
1	55	0	1,0,0,0,0	pain	40s	133000
2	71	0	0,1,0,0,0	beta blockers, pain	20s	34000
3	89	1	1,0,0,0,0	beta blockers	50s	40000
4	67	0	0,0,0,1,0	none	50s	120000

pain pain & beta blockers beta blockers no medications

Should we use one-hot encoding?

pain pain & beta blockers beta blockers no medications

• Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	0	1	0
no medications	0	0	0	1

Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	0	1	0
no medications	0	0	O	1

• Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	0	1	0
no medications	0	0	O	1

	ϕ_d	ϕ_{d+1}
pain	1	0
pain & beta blockers	1	1
beta blockers	0	1
no medications	0	O

Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	O	1	0
no medications	0	0	O	1

	ϕ_d	ϕ_{d+1}
pain	1	0
pain & beta blockers	1	1
beta blockers	0	1
no medications	0	0

Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	0	1	0
no medications	0	0	0	1

	ϕ_d	ϕ_{d+1}
pain	1	0
pain & beta blockers	1	1
beta blockers		1
no medications	0	0

Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	0	1	0
no medications	0	0	0	1

	ϕ_d	ϕ_{d+1}
pain	1	0
pain & beta blockers	1	1
beta blockers	0	1
no medications	0	0

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5		age	family income (USD)
1	55	0	1,0,0,0,0	pain	40s	133000
2	71	0	0,1,0,0,0	beta blockers, pain	20s	34000
3	89	1	1,0,0,0,0	beta blockers	50s	40000
4	67	0	0,0,0,1,0	none	50s	120000

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	age	family income (USD)
1	55	0	1,0,0,0,0	1,0	40s	133000
2	71	0	0,1,0,0,0	1,1	20s	34000
3	89	1	1,0,0,0,0	0,1	50s	40000
4	67	0	0,0,0,1,0	0,0	50s	120000

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	age	family income (USD)
1	55	0	1,0,0,0,0	1,0	40s	133000
2	71	0	0,1,0,0,0	1,1	20s	34000
3	89	1	1,0,0,0,0	0,1	50s	40000
4	67	0	0,0,0,1,0	0,0	50s	120000

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	age	family income (USD)
1	55	0	1,0,0,0,0	1,0	45	133000
2	71	0	0,1,0,0,0	1,1	25	34000
3	89	1	1,0,0,0,0	0,1	55	40000
4	67	0	0,0,0,1,0	0,0	55	120000

age

 Potential pitfall: level of detail might be treated as meaningful (by you or others using the data)

55

14

 Potential pitfall: level of detail might be treated as meaningful (by you or others using the data)

age

45

25

55

55

TECH MYSTERIES

How an internet mapping glitch turned a random Kansas farm into a digital hell

Kashmir Hill 4/10/16 10 AM

- Potential pitfall: level of detail might be treated as meaningful (by you or others using the data)
- A way to diagnose many problems: plot your data!

age

45

25

55

55

TECH MYSTERIES

How an internet mapping glitch turned a random Kansas farm into a digital hell

Kashmir Hill 4/10/16 10 AM

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	age	family income (USD)
1	55	0	1,0,0,0,0	1,0	45	133000
2	71	0	0,1,0,0,0	1,1	25	34000
3	89	1	1,0,0,0,0	0,1	55	40000
4	67	0	0,0,0,1,0	0,0	55	120000

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

 Numerical data: order on data values, and differences in value are meaningful

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values
- Ordinal data: order on data values, but differences not meaningful

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1	2	3	4	5

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1	2	3	4	5

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1	2	3	4	5

 Numerical data: order on data values, and differences in value are meaningful

Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Stron	ngly gree	Disagree	Neutral	Agre	е	Strongly agree
1		2	3	4		5

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1	2	3	4	5

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1	2	3	4	5

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1	2	3	4	5

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1,0,0,0,0	1,1,0,0,0	1,1,1,0,0	1,1,1,1,0	1,1,1,1,1

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

17

A closer look at the output of a linear classifier

A closer look at the output of a linear classifier

A closer look at the output of a linear classifier

- A closer look at the output of a linear classifier
- Idea: standardize numerical data

- A closer look at the output of a linear classifier
- Idea: standardize numerical data

- A closer look at the output of a linear classifier
- Idea: standardize numerical data

• For dth feature: $\phi_d^{(k)} = \frac{x_d^{(k)} - \text{mean}_d}{\text{stable}}$

- A closer look at the output of a linear classifier
- Idea: standardize numerical data

• For dth feature: $\phi_d^{(k)} = \frac{x_d^{(k)} - \text{mean}_d}{\text{gradient}}$

More benefits of plotting your data

More benefits of plotting your data

And talking to experts

More benefits of plotting your data

And talking to experts

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

- Identify the features and encode as real numbers
- Standardize numerical features

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

- Identify the features and encode as real numbers
- Standardize numerical features

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

- Identify the features and encode as real numbers
- Standardize numerical features

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	-1.5	0	1,0,0,0,0	1,0	1	2.075
2	0.1	0	0,1,0,0,0	1,1	-1	-0.4
3	1.9	1	1,0,0,0,0	0,1	2	-0.25
4	-0.3	0	0,0,0,1,0	0,0	2	1.75

25

Nonlinear boundaries

Classification boundaries $\theta^{T}x + \theta_0 = 2$

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0		
1		
2		
3		

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	
1		
2		
3		

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	
1	$[1, x_1]$	
2		
3		

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	
1	$[1, x_1]$	
2	$[1, x_1, x_1^2]$	
3		

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	
1	$[1, x_1]$	
2	$[1, x_1, x_1^2]$	
3	$[1, x_1, x_1^2, x_1^3]$	

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	[1]
1	$[1, x_1]$	
2	$[1, x_1, x_1^2]$	
3	$[1, x_1, x_1^2, x_1^3]$	

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	[1]
1	$[1, x_1]$	$[1, x_1, \ldots, x_d]$
2	$[1, x_1, x_1^2]$	
3	$[1, x_1, x_1^2, x_1^3]$	

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	[1]
1	$[1, x_1]$	$[1, x_1, \ldots, x_d]$
2	$[1, x_1, x_1^2]$	$[1, x_1, \dots, x_d, x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2]$
3	$[1, x_1, x_1^2, x_1^3]$	

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	[1]
1	$[1, x_1]$	$[1, x_1, \ldots, x_d]$
2	$[1, x_1, x_1^2]$	$[1, x_1, \dots, x_d, x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2]$
3	$[1, x_1, x_1^2, x_1^3]$	$ \begin{bmatrix} 1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2, \\ x_1^3, x_1^2 x_2, x_1 x_2 x_3, \dots, x_d^3 \end{bmatrix} $

 But seems like our classifier is overfitting

How can we detect overfitting?

- How can we detect overfitting?
- How can we avoid overfitting?

- How good is our learning algorithm on data like ours?
- Idea: use full data for training and then report training error

- How good is our learning algorithm on data like ours?
- Idea: use full data for training and then report training error
- Idea: reserve some data for testing

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing
 - More training data: closer to training on full data

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing
 - More training data: closer to training on full data
 - More testing data: less noisy estimate of performance

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing
 - More training data: closer to training on full data
 - More testing data: less noisy estimate of performance
 - Only one classifier might not be representative

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing
 - More training data: closer to training on full data
 - More testing data: less noisy estimate of performance
 - Only one classifier might not be representative
 - Good idea to shuffle order of data

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing
 - More training data: closer to training on full data
 - More testing data: less noisy estimate of performance
 - Only one classifier might not be representative
 - Good idea to shuffle order of data

- Idea: use full data for training and then report training error
- Idea: reserve some data for testing
 - More training data: closer to training on full data
 - More testing data: less noisy estimate of performance
 - Only one classifier might not be representative
 - Good idea to shuffle order of data

 How good is our learning algorithm on data like ours?

 Idea: use full data for training and then report training error

Idea: reserve some data for testing

- More training data: closer to training on full data
- More testing data: less noisy estimate of performance
- Only one classifier might not be representative
- Good idea to shuffle order of data

Cross-validate (\mathcal{D}_n , k)

```
Cross-validate(\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)
```


Cross-validate(\mathcal{D}_n , k)
Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k}$ (of roughly equal size)

Cross-validate(\mathcal{D}_n , k)
Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k}$ (of roughly equal size)


```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```



```
Cross-validate (\mathcal{D}_n, k)

Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

train h_i on \mathcal{D}_n \backslash \mathcal{D}_{n,i} (i.e. except chunk i)
```



```
Cross-validate (\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

train h_i on \mathcal{D}_n \backslash \mathcal{D}_{n,i} (i.e. except chunk i) compute "test" error \mathcal{E}(h_i,\mathcal{D}_{n,i}) of h_i on \mathcal{D}_{n,i}
```


Cross-validate (\mathcal{D}_n , k)

Divide \mathcal{D}_n into k chunks $\mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k}$ (of roughly equal size)

for i=1 to ktrain h_i on $\mathcal{D}_n\backslash\mathcal{D}_{n,i}$ (i.e. except chunk i) compute "test" error $\mathcal{E}(h_i,\mathcal{D}_{n,i})$ of h_i on $\mathcal{D}_{n,i}$ Return $\frac{1}{k}\sum_{i=1}^k \mathcal{E}(h_i,\mathcal{D}_{n,i})$


```
Cross-validate (\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

train h_i on \mathcal{D}_n\backslash\mathcal{D}_{n,i} (i.e. except chunk i) compute "test" error \mathcal{E}(h_i,\mathcal{D}_{n,i}) of h_i on \mathcal{D}_{n,i}

Return \frac{1}{k}\sum_{i=1}^k \mathcal{E}(h_i,\mathcal{D}_{n,i})
```

Again, good idea to shuffle order of data first