AND COMPUTER SCIENCE
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* Potential pitfall: level of detail might be treated as
meaningful (by you or others using the data)

A way to diagnose many problems: plot your data!
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farm into a digital hell

55 KashmirHill  4/10/16 10 AM
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value are meaningful

» Categorical data: no order on data values
e Ordinal data: order on data values, but differences not

meamngful Sirongly Disagree Neutral Agree Strongly

. di
» E.g. Likert scale; |7°99%° 2l
1,0,0,0,0 1,1,0,0,0 1,1,1,0,0 1,1,1,1,0 1,1,1,1,1

=5

resting T + +-
heart o
+ + + =
rate -
(bpm) ., * f — e |dea: Unary/
+ + _ thermometer code
+ +
= — -
+ —

Deqgree of
agreement

10



Encode data in usable form

* |dentity the features and encode as real numbers

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (USD)

1 55 0 1.0,0,0,0 1.0 4 133000
2 71 0 0,1,0,0,0 1.1 i 2 ! 34000
3 89 1 1.0,0,0,0 0,1 5 40000
4 67 0 0,0,0,1.0 0,0 5 f 120000
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Encode data in usable form

* |dentity the features and encode as real numbers

resting family

heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (USD)

1 55 0 1,0,0,0,0 1,0 4 133000

34000

2 71 0 01,000 1, 2
3 89 11,0000 0,1 5 | 40000
4 67 0 000,10 0,0 5 | 120000 |




Encode data in usable form

* |dentity the features and encode as real numbers

resting
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade
(bpm)
1 55 0 1,0,0,0,0 1,0 4
2 /1 0 0,1,0,0,0 1,1 2
3 89 1 1,0,0,0,0 0,1 5
4 67 0 0,0,0,1,0 0,0 5

17
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income
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34000

40000
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* A closer look at the output of a linear classifier

resting +

heart +

rate +
(bpm)

=b

N T+ + +
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Encode numerical data

* A closer look at the output of a linear classifier

resting
heart
rate

(bpm)

==

+ +

I 1+
I

-
N T T+ +
|11 I ++ +
S+ + ++
1|+ +

Weekly #
garlic cloves
eaten
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Encode numerical data

* A closer look at the output of a linear classifier

Income - - _ =

resting heart
rate (bpm)
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Encode numerical data

* A closer look at the output of a linear classifier

Income

resting heart
rate (bpm)
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Encode numerical data

* A closer look at the output of a linear classifier
* |dea: standardize numerical data

Income

resting heart
rate (bpm)
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Encode numerical data

* A closer look at the output of a linear classifier
* |dea: standardize numerica}L data

. (k) _ L,y — 1eallq
| For ath feature: ¢ stddev,
iIncome

resting heart
rate (bpm)



Encode numerical data

* A closer look at the output of a linear classifier
* |dea: standardize numerica}L data

+ For ath feature: ¢ = —d— —20d

stddevy

standardized
resting heart
rate (bpm)
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Encode numerical data

* A closer look at the output of a linear classifier
* |dea: standardize numerica}l€ data

+ For ath feature: ¢ = —d— —20d

stddevy

standardized
resting heart
rate (bpm)
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More benefits of plotting your data
 And talking to experts

Seen at a
particular
hospital?

resting heart
rate (bpm)
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Encode data in usable form

* |dentity the features and encode as real numbers

resting
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade
(bpm)
1 55 0 1,0,0,0,0 1,0 4
2 /1 0 0,1,0,0,0 1,1 2
3 89 1 1,0,0,0,0 0,1 5
4 67 0 0,0,0,1,0 0,0 5
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Encode data in usable form

* |dentity the features and encode as real numbers
e Standardize numerical features

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (USD)

1 55 0 1,0,0,0,0 1,0 4 133000
2 /1 0 0,1,0,0,0 1,1 2 34000
3 89 1 1,0,0,0,0 0,1 5 40000
4 67 0 0,0,0,1,0 0,0 5 120000
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Encode data in usable form

* |dentity the features and encode as real numbers
e Standardize numerical features

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income

(bpm) (USD)

133000

0 0,1,0,0,0 1,1 2 34000
1 1,0,0,0,0 0,1 5 40000

0 0,0,0,1,0 0,0 | 120000

24



Encode data in usable form

* |dentity the features and encode as real numbers
e Standardize numerical features

resting family

heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (VE]))

1 -1.5 0 1,0,0,0,0 1,0 1 2.075
2 0.1 0 0,1,0,0,0 1,1 -1 -0.4
3 1.9 1 1,0,0,0,0 0,1 2 -0.25
4 -0.3 0 0,0,0,1,0 0,0 2 1.75
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Nonlinear boundaries

resting ~ e Training error is O!

getaert - * But seems like our
classifier is overfitting

weekly
exercise
amount

 How can we detect overfitting”
 How can we avoid overfitting”?
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Evaluation of a learning algorithm

then report training error

(1) (1)

How good Is our learning
algorithm on data like ours” _

dea: use full data for training and

dea: reserve some data for testing

* More training data: closer to
training on full data

* More testing data: less noisy
estimate of performance

* Only one classifier might not be
representative

e (Good idea to shuffle order of data
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Evaluation of a learning algorithm

(1) (1)

Cross-validate (D, , k)
Divide D, into k chunks Dn1,...,Dnpr (of
roughly equal size)
for 1 =1 to k
train h; on Dp\D,; (i.e. except chunk 1)
compute “test” error &(hy,D,;) of h; on Dy,

k
1
Return ; Z E(hiy,Dp i)

1=1

* Again, good idea to shuffle order of data first



