AND COMPUTER SCIENCE

®EECs 6.036/6.862: Introduction to
éliECTRICALENGINEERING MaCh|ne Learn|ng

Lecture: starts Tuesdays 9:35am (Boston time zone)
Course website: introml.odl.mit.edu

Who's talking? Pro

. Tamara Broderick

Questions? discourse.odl.mit.edu (“Lecture 4” category)
Materials: Will all be available at course website
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 How to choose hyperparameters? One option: consider
13 a handful of possible values and compare via CV
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