

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? discourse.odl.mit.edu ("Lecture 4" category)

Materials: Will all be available at course website

Last Time(s)

- I. Linear classifiers
- II. Perceptron algorithm
- III. A more-complete ML analysis

Today's Plan

- I. Linear logisticclassification/logisticregression
- II. Gradient descent

 Perceptron struggles with data that's not linearly separable

 Perceptron struggles with data that's not linearly separable

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron doesn't have a notion of uncertainty (how well do we know what we know?)

2

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron doesn't have a notion of uncertainty (how well do we know what we know?)

2

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron struggles with data that's not linearly separable

Notice

 Perceptron struggles with data that's not linearly separable

Notice

How to make this shape?

How to make this shape?

How to make this shape?

- How to make this shape?
 - Sigmoid/logistic function

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

$$g(x)$$

$$g(x)$$

$$g(x)$$

$$f(x)$$

2 features:

Capturing uncertainty

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

Capturing uncertainty

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta^{\top} x + \theta_0) = \frac{1}{1 + \exp\{-(\theta^{\top} x + \theta_0)\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

 x_1

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

 x_1

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

Linear logistic classification (aka logistic regression)

Linear logistic classification $\frac{1}{2}$ aka $\frac{1}{2}$ ogistic $\frac{1}{2}$ How do we learn a classifier (i.e. learn θ, θ_0)? regression

Linear logistic classification

How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic regression

How do we learn a classifier (i.e. learn θ, θ_0)? regression Linear logistic classification

How do we make predictions?

How do we make predictions?

How do we make predictions?

- How do we make predictions?

- How do we make predictions?

Idea: predict +1 if: probability > 0.5

- How do we make predictions?

Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$

- How do we make predictions?

- How do we make predictions?

Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$ $\frac{1}{1 + \exp\left\{-(\theta^{\top}x + \theta_0)\right\}}$ $\exp\left\{-(\theta^{\top}x + \theta_0)\right\} < 1$

- How do we make predictions?

Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$ $\frac{1}{1 + \exp\left\{-(\theta^{\top}x + \theta_0)\right\}}$ $\exp\left\{-(\theta^{\top}x + \theta_0)\right\} < 1$ $\theta^{\top} x + \theta_0 > 0$

- How do we make predictions?

Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$ $\frac{1}{1 + \exp\left\{-(\theta^{\top}x + \theta_0)\right\}}$ $\exp\left\{-(\theta^{\top}x + \theta_0)\right\} < 1$ $\theta^{\top}x + \theta_0 > 0$

> Same hypothesis class as before!

How do we make predictions?

Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$ $\frac{1}{1 + \exp\left\{-(\theta^{\top}x + \theta_0)\right\}}$ $\exp\left\{-(\theta^{\top}x + \theta_0)\right\} < 1$ $\theta^{\top} x + \theta_0 > 0$

 Same hypothesis class as before! But we will get:

 Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$ $\frac{1}{1 + \exp\left\{-(\theta^{\top}x + \theta_0)\right\}}$ $\exp\left\{-(\theta^{\top}x + \theta_0)\right\} < 1$ $\theta^{\top} x + \theta_0 > 0$

- Same hypothesis class as before! But we will get:
 - Uncertainties

 Idea: predict +1 if: probability > 0.5 $\sigma(\theta^{\top}x + \theta_0) > 0.5$

$$\frac{1}{1 + \exp\{-(\theta^{\top}x + \theta_0)\}} > 0.$$

$$\exp\{-(\theta^{\top}x + \theta_0)\} < 1$$

$$\theta^{\top}x + \theta_0 > 0$$

- Same hypothesis class as before! But we will get:
 - Uncertainties
 - Quality guarantees when data not linearly separable

Linear logistic classification $\frac{1}{2}$ aka $\frac{1}{2}$ ogistic $\frac{1}{2}$ How do we learn a classifier (i.e. learn θ, θ_0)? regression

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic ? regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic ? regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

aka logistic regression How do we learn a classifier (i.e. learn θ, θ_0)?

Probability(data)

How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

 $= \prod_{i=1} \text{Probability}(\text{data point } i)$

How do we learn a classifier (i.e. learn $heta, heta_0$)

Probability(data)

Probability(data point i) i=1

aka logistic

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

= $\prod_{i=1}$ Probability(data point i) i=1 [Let $g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)$]

aka logistic

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

 $= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

 $= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

 $= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

aka logistic regression

• How do we learn a classifier (i.e. learn $heta, heta_0$)?

Probability(data)

 $= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

• How do we learn a classifier (i.e. learn θ, θ_0)? regression repression robability(data) Linear logistic classification

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

log probability(data)

i=1

• How do we learn a classifier (i.e. learn θ, θ_0)? regression repression robability(data) Linear logistic classification

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

log probability(data)

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Loss(data) =
$$-\log \text{ probability(data)}$$

$$= \sum_{i=0}^{n} -\left(\mathbf{1}\{y^{(i)}=+1\}\log g^{(i)}+\mathbf{1}\{y^{(i)}\neq+1\}\log(1-g^{(i)})\right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Loss(data) =
$$-\log \text{ probability}(c)$$

Loss(data) = -log probability(data) =
$$\sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)}) \right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

Temperature (C)

Loss(data) = -log probability(data)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Loss(data) =
$$-\log \text{ probability}(\text{data})$$

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} - \text{Temperature (C)}$$

Loss(data) = $-\log \text{ probability(data)}$

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) = -log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

• How do we learn a classifier (i.e. learn θ, θ_0)? regression robability(data) Linear logistic classification

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} - \text{Temperature (C)}$$

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Negative log likelihood loss (g for guess, a for actual):

Probability(data)

=
$$\prod_{i=1}$$
 Probability(data point i)
 $i=1$ [Let $g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)$]

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Negative log likelihood loss (g for guess, a for actual):

$$-L_{\text{nll}}(g, a) = (1\{a = +1\} \log g + 1\{a \neq +1\} \log(1 - g))$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$\frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Want to find parameter values to minimize average (negative log likelihood) loss across the data

$$J_{\text{lr}}(\Theta) = J_{\text{lr}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{nll}}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$ Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial G_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial G_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial f} \\ \overline{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial f} \\ \overline{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

repeat

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

until

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \boldsymbol{\Theta}^{(t)} &= \boldsymbol{\Theta}^{(t-1)} - \eta \nabla_{\boldsymbol{\Theta}} f(\boldsymbol{\Theta}^{(t-1)}) \\ \mathbf{until} \left| f(\boldsymbol{\Theta}^{(t)}) - f(\boldsymbol{\Theta}^{(t-1)}) \right| < \epsilon \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

repeat

$$\begin{aligned} &\texttt{t} = \texttt{t} + \texttt{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\texttt{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ &\texttt{Return} \ \Theta^{(t)} \end{aligned}$$

Other possible stopping criteria:

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $|\Theta^{(t)} \Theta^{(t-1)}| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $|\Theta^{(t)} \Theta^{(t-1)}| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• Theorem: Gradient descent performance

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - Assumptions:

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- **Theorem**: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

• Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable

• Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex

- Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

Gradient descent for logistic regression

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- ullet Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

Gradient descent for logistic regression

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr}, \nabla_{\Theta} J_{lr}, \epsilon$)

Gradient descent for logistic regression

- Loss $J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$ is differentiable & convex
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr}, \nabla_{\Theta} J_{lr}, \epsilon$)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

• A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda \|\theta\|^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda \|\theta\|^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

How to choose hyperparameters? One option: consider
 a handful of possible values and compare via CV

LR-Gradient-Descent ($heta_{
m init}, heta_{
m 0,init}, \eta, \epsilon$)

LR-Gradient-Descent ($heta_{
m init}, heta_{0,
m init}, \eta, \epsilon$)

Initialize $\theta^{(0)} = \theta_{\rm init}$ Initialize $\theta^{(0)}_0 = \theta_{0,\rm init}$

```
LR-Gradient-Descent (	heta_{
m init}, 	heta_{
m 0,init}, \eta, \epsilon)
```

```
Initialize \theta^{(0)}=\theta_{\mathrm{init}} Initialize \theta_0^{(0)}=\theta_{0,\mathrm{init}} Initialize t = 0
```

```
LR-Gradient-Descent (	heta_{
m init}, 	heta_{
m 0,init}, \eta, \epsilon)
```

```
Initialize \theta^{(0)}=\theta_{\rm init} Initialize \theta_0^{(0)}=\theta_{0,\rm init} Initialize t = 0
```

repeat

```
LR-Gradient-Descent (	heta_{
m init}, 	heta_{
m 0,init}, \eta, \epsilon)
```

```
Initialize \theta^{(0)}=\theta_{\mathrm{init}} Initialize \theta_0^{(0)}=\theta_{0,\mathrm{init}} Initialize t = 0
```

repeat

$$t = t + 1$$

LR-Gradient-Descent ($heta_{
m init}, heta_{0,
m init}, \eta, \epsilon$)

Initialize $\theta^{(0)}=\theta_{\mathrm{init}}$ Initialize $\theta_0^{(0)}=\theta_{0,\mathrm{init}}$ Initialize t = 0

Exactly gradient descent with *f* given by logistic regression objective

repeat

$$\begin{split} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \boldsymbol{\theta}^{(t)} &= \boldsymbol{\theta}^{(t-1)} - \eta \bigg\{ \frac{1}{n} \sum_{i=1}^{n} \left[\sigma(\boldsymbol{\theta}^{(t-1)\top} \boldsymbol{x}^{(i)} + \boldsymbol{\theta}_{0}^{(t-1)}) - \boldsymbol{y}^{(i)} \right] \boldsymbol{x}^{(i)} \\ &\qquad \qquad + 2\lambda \boldsymbol{\theta}^{(t-1)} \bigg\} \\ \boldsymbol{\theta}_{0}^{(t)} &= \boldsymbol{\theta}_{0}^{(t-1)} - \eta \bigg\{ \frac{1}{n} \sum_{i=1}^{n} \left[\sigma(\boldsymbol{\theta}^{(t-1)\top} \boldsymbol{x}^{(i)} + \boldsymbol{\theta}_{0}^{(t-1)}) - \boldsymbol{y}^{(i)} \right] \bigg\} \end{split}$$

LR-Gradient-Descent ($heta_{
m init}, heta_{
m 0,init}, \eta, \epsilon$)

Initialize $\theta^{(0)} = \theta_{\text{init}}$ Initialize $\theta_0^{(0)} = \theta_{0,\text{init}}$ Initialize t = 0

Exactly gradient descent with f given by logistic regression objective

repeat

$$\begin{split} \dot{\mathbf{t}} &= \mathbf{t} + \mathbf{1} \\ \boldsymbol{\theta}^{(t)} &= \boldsymbol{\theta}^{(t-1)} - \eta \bigg\{ \frac{1}{n} \sum_{i=1}^n \left[\sigma(\boldsymbol{\theta}^{(t-1)\top} \boldsymbol{x}^{(i)} + \boldsymbol{\theta}_0^{(t-1)}) - \boldsymbol{y}^{(i)} \right] \boldsymbol{x}^{(i)} \\ &\qquad \qquad + 2\lambda \boldsymbol{\theta}^{(t-1)} \bigg\} \\ \boldsymbol{\theta}_0^{(t)} &= \boldsymbol{\theta}_0^{(t-1)} - \eta \bigg\{ \frac{1}{n} \sum_{i=1}^n \left[\sigma(\boldsymbol{\theta}^{(t-1)\top} \boldsymbol{x}^{(i)} + \boldsymbol{\theta}_0^{(t-1)}) - \boldsymbol{y}^{(i)} \right] \bigg\} \end{split}$$

$$\theta_0^{(t)} = \theta_0^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^n \left[\sigma(\theta^{(t-1)\top} x^{(i)} + \theta_0^{(t-1)}) - y^{(i)} \right] \right\}$$

until
$$|J_{
m lr}(heta^{(t)}, heta^{(t)}_0) - J_{
m lr}(heta^{(t-1)}, heta^{(t-1)}_0)| < \epsilon$$

LR-Gradient-Descent ($heta_{
m init}, heta_{
m 0,init}, \eta, \epsilon$)

Initialize $\theta^{(0)} = \theta_{\rm init}$ Initialize $\theta_0^{(0)} = \theta_{0,\rm init}$ Initialize t = 0

Exactly gradient descent with *f* given by logistic regression objective

repeat

$$\begin{aligned}
\dot{\mathbf{t}} &= \mathbf{t} + \mathbf{1} \\
\theta^{(t)} &= \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} \left[\sigma(\theta^{(t-1)\top} x^{(i)} + \theta_0^{(t-1)}) - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}
\end{aligned}$$

$$\theta_0^{(t)} = \theta_0^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^n \left[\sigma(\theta^{(t-1)\top} x^{(i)} + \theta_0^{(t-1)}) - y^{(i)} \right] \right\}$$

$$\begin{aligned} & \text{until } |J_{\text{lr}}(\theta^{(t)}, \theta_0^{(t)}) - J_{\text{lr}}(\theta^{(t-1)}, \theta_0^{(t-1)})| < \epsilon \\ & \text{Return } \theta^{(t)}, \theta_0^{(t)} \end{aligned}$$