

6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? discourse.odl.mit.edu ("Lecture 9" category)

Materials: Will all be available at course website

Last Time(s)

- Regression, classification
- II. Decisions incur loss but don't have broader effect

Today's Plan

- I. Decisions change the state of the world
- II. State machines
- III. Markov decision processes (MDPs)

Decision-Analytic Assessment of the Economic Value of Weather Forecasts: The Fallowing/Planting Problem

RICHARD W. KATZ

National Center for Atmospheric Research, U.S.A.

and

BARBARA G. BROWN* and ALLAN H. MURPHY Oregon State University, U.S.A.

• S = set of possible states

• S = set of possible states

- S = set of possible states
- \mathcal{X} = set of possible inputs

- S = set of possible states
- \mathcal{X} = set of possible inputs

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state

plant, fallow

Example

 $s_0 = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

plant, fallow

$$s_0 = \text{rich}$$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

Example

 $s_0 = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

Example

 $s_0 = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} o \mathcal{Y}: ext{output}$ function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R reward function

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R
 reward function
 e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R
 reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \longrightarrow \mathbb{R}$ reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R: $\mathcal{X} \to \mathbb{R}$ reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - •e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- T
 transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- ullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- ullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

start state rich poor
$$0.1$$
 0.9 poor

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

start state rich poor
$$0.1$$
 0.9 0.01 0.99

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

start state rich poor
$$0.1$$
 0.9 0.01 0.99

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- T
 transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \to \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- S = set of possiblestates
- A = set of possibleactions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

• S = set of possiblestates

- A = set of possibleactions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

• S = set of possiblestates

- A = set of possibleactions
- ullet $T: \mathcal{S} imes \mathcal{A} imes \mathcal{S}
 ightarrow \mathbb{R}$: transition model
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

• Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state
- Question 1: what's the "value" of a policy?

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state
- Question 1: what's the "value" of a policy?
- Question 2: what's the best policy?

What's the value of a policy?

What's the value of a policy?

O.1

O.9

O.9

Fallow:

plant:

poor soil

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(rich,fallow)=0
R(rich,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

What's the value of a policy?

O.1

O.9

O.9

Fallow:

poor soil

O.9

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=100
R(rich,fallow)=0

R(poor,fallow)=0

I'm renting a field for h growing seasons. Then it will be destroyed to make a strip mall.

h: horizon (e.g. how many growing seasons left)

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

8

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

What's the value of a policy?

O.1

O.9

O.9

Fallow:

poor soil

O.9

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=10
R(rich,fallow)=0

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0$$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) =$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) =$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) = 100$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) =$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$
$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$
$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot \frac{V_{\pi}^{h-1}(s')}{V_{\pi_{A}}^{1}(\text{rich})} = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$
$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) =$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) +$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich})$$

$$+ T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich})}{+ T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})}$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})}{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})} V_{\pi_{A}}^{1}(\text{rich}) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})}{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})} V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + \frac{(0.1)(100) + (0.9)(10)}{T(100)} V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) \frac{V_{\pi_{A}}^{1}(\text{rich})}{V_{\pi_{A}}^{1}(\text{rich})} + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) \frac{V_{\pi_{A}}^{1}(\text{rich})}{V_{\pi_{A}}^{1}(\text{rich})} + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

$$= 110$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins?

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins?

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 120; V_{\pi_{A}}^{3}(\text{poor}) = 40; V_{\pi_{B}}^{3}(\text{rich}) = 100; V_{\pi_{B}}^{3}(\text{poor}) = 90$$

 $V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$

Who wins?

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

 $V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$

Who wins? $\pi_A >_{h=1} \pi_B$ h=3

- 11. HOHZOH (e.g. HOW Hally growing seasons left) [h(poor, lailow $T^{h}(s)$, value (expected reward) with policy σ eterting et a
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

- Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$
 - 8 I.e. at least as good at all states and strictly better for at least one state

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1}^{\kappa_A} \pi_B; \pi_A <_{h=3}^{\kappa_B} \pi_B; h=2$

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B;$ No policy wins for h=2

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B;$ No policy wins for h=2

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

What's the value of a policy? plant: rich soil rich soil R(rich,plant)=100 could allow R(poor,plant)=10• $V_{\pi}^{h}(s)$: value (expected reward Policy to depending to the policy to depending the policy to depend policy to depend the policy the policy to depend the policy t R(rich,fallow)=0 on horizon ("non-R(poor,fallow)=0ing at s stationary") Dueling farmers! π_A : always plan Trich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_A}^2(\text{rich}) = 119; V_{\pi_A}^2(\text{poor}) = 29; V_{\pi_B}^2(\text{rich}) = 110; V_{\pi_B}^2(\text{poor}) = 90$$

$$V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

$$V_{\pi_{A}}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi_{h}(s)) + \sum_{s'} T(s, \pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

What's the value of a policy? plant: rich soil rich soil R(rich,plant)=100 could allow R(poor,plant)=10• $V_{\pi}^{h}(s)$: value (expected reward Policy to depending to the policy to depending the policy to depend the policy to depend the policy to the policy R(rich,fallow)=0 on horizon ("non-R(poor,fallow)=0ing at s stationary")

Dueling farmers! π_A : always plan rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s(\pi_{h}(s))) + \sum_{s'} T(s(\pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s'))$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

 $V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi_{h}(s)) + \sum_{s'} T(s, \pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s')$ $V_{\pi_A}^1(\text{rich}) = 100; V_{\pi_A}^1(\text{poor}) = 10; V_{\pi_B}^1(\text{rich}) = 100; V_{\pi_B}^1(\text{poor}) = 0$ $V_{\pi_A}^2(\text{rich}) = 119; V_{\pi_A}^2(\text{poor}) = 29; V_{\pi_B}^2(\text{rich}) = 110; V_{\pi_B}^2(\text{poor}) = 90$ $V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification 8 I.e. at least as good at all states and strictly better for at least one state

$$V_{\pi_{A}}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi_{h}(s)) + \sum_{s'} T(s, \pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

• $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left

What's the best policy? fallow: plant: rich soil rich soil poor soil poor soil R(rich,plant)=100 R(poor,plant)=10R(rich,fallow)=0 h: horizon (e.g. how many planting seasons)

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s,a)$

R(poor,fallow)=0

What's the best policy? fallow: plant: rich soil rich soil poor soil poor soil

h: horizon (e.g. how many planting seasons)

R(poor,plant)=10R(rich,fallow)=0

R(rich,plant)=100

R(poor,fallow)=0

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

Compare to: $V_{\pi}^{h}(s)$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

Compare to: $V_{\pi}^{h}(s)$

Note: there can be more than one optimal policy

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

Compare to: $V_{\pi}^{h}(s)$

Note: there can be more than one optimal policy

Note: the optimal policy may be non-stationary

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

R(poor,fallow)=0

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0; Q^1(s,a) = R(s,a)$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0; Q^1(s,a) = R(s,a)$

 $Q^1(\text{rich}, \text{plant}) =$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0; Q^1(s,a) = R(s,a)$

$$Q^1(\text{rich}, \text{plant}) = 100$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{1}(s, a) = R(s, a)$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

$$Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{1}(s, a) = R(s, a)$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

$$Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{1}(s, a) = R(s, a)$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

$$Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{1}(s, a) = R(s, a)$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

$$Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0;$$
 $Q^{1}(s, a) = R(s, a)$
 $Q^{1}(\text{rich, plant}) = 100;$ $Q^{1}(\text{rich, fallow}) = 0;$
 $Q^{1}(\text{poor, plant}) = 10;$ $Q^{1}(\text{poor, fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; \quad Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; \quad Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0$; $Q^h(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s, a)$ $Q^0(s, a) = 0$; $Q^h(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find **an optimal policy**: $\pi_h^*(s) = \arg\max_a Q^h(s, a)$ $Q^0(s, a) = 0$; $Q^h(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$
- $Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$ $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0$; $Q^h(s,a) = R(s,a) + \sum_{s'} \frac{T(s,a,s')}{T(s,a,s')} \max_{a'} Q^{h-1}(s',a')$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find **an optimal policy**: $\pi_h^*(s) = \arg\max_a Q^h(s, a)$ $Q^0(s, a) = 0$; $Q^h(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \frac{\max_{a'} Q^{h-1}(s', a')}{\max_{a'} Q^{h-1}(s', a')}$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find **an optimal policy**: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0$; $Q^h(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$
- $Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$ $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find **an optimal policy**: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$ $Q^0(s, a) = 0$; $Q^h(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

$$Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$$

$$Q^{2}(\text{rich, plant}) = 0$$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = R(\text{rich}, \text{plant}) +$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

$$Q^{2}(\text{rich, plant}) = R(\text{rich, plant}) + T(\text{rich, plant, rich}) \max_{a'} Q^{1}(\text{rich, }a') + T(\text{rich, plant, poor}) \max_{a'} Q^{1}(\text{poor}, a')$$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

 $Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$

 $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = R(\text{rich}, \text{plant}) + T(\text{rich}, \text{plant}, \frac{\text{rich}}{\text{rich}}) \max Q^1(\text{rich}, a')$ $+ T(\text{rich, plant, poor}) \max_{a}^{a'} Q^{1}(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons) R(poor,fallow)=0 • $Q^h(s,a)$: expected reward of starting at s, making action
- a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s,a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

$$Q^{2}(\text{rich, plant}) = R(\text{rich, plant}) + T(\text{rich, plant, rich}) \max_{a'} Q^{1}(\text{rich, }a') + T(\text{rich, plant, poor}) \max_{a'} Q^{1}(\text{poor, }a')$$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

$$Q^{2}(\text{rich, plant}) = R(\text{rich, plant}) + T(\text{rich, plant, rich}) \max_{a'} Q^{1}(\text{rich, a'}) + T(\text{rich, plant, poor}) \max_{a'} Q^{1}(\text{poor}, a')$$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor plant}) = 10; Q^{1}(\text{poor fallow}) = 0$

 $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = R(\text{rich}, \text{plant}) + T(\text{rich}, \text{plant}, \text{rich}) \max Q^1(\text{rich}, a')$

 $+ T(\text{rich, plant, poor}) \max^{a'} Q^{1}(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

$$Q^{1}(\text{poor}, \text{plant}) = 100, & (\text{fich, range}) = 0,$$

$$Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$$

$$Q^{2}(\text{rich, plant}) = R(\text{rich, plant}) + T(\text{rich, plant, rich}) \max_{a'} Q^{1}(\text{rich, }a') + T(\text{rich, plant, poor}) \max_{a'} Q^{1}(\text{poor}, a')$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

 $Q^{2}(\text{rich, plant}) = 100 + T(\text{rich, plant, rich}) \max_{a'} Q^{1}(\text{rich, }a') + T(\text{rich, plant, poor}) \max_{a'} Q^{1}(\text{poor, }a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

$$Q^{1}(\text{poor}, \text{plant}) = 100, Q^{1}(\text{poor}, \text{fallow}) = 0,$$

$$Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0.$$

$$Q^{2}(\text{rich}, \text{plant}) = 100 + \frac{T(\text{rich}, \text{plant}, \text{rich})}{T(\text{rich}, \text{plant}, \text{poor})} \max_{a'} Q^{1}(\text{rich}, a') + T(\text{rich}, \text{plant}, \text{poor}) \max_{a'} Q^{1}(\text{poor}, a')$$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

$$Q^{2}(\text{rich, plant}) = 100 + (0.1) \max_{a'} Q^{1}(\text{rich}, a')$$

 $+ T(\text{rich, plant, poor}) \max_{\alpha} Q^{1}(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

$$Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$$

$$Q^2(\text{rich}, \text{plant}) = 100 + (0.1) \max_{a'} Q^1(\text{rich}, a')$$

 $+ T(\text{rich, plant, poor}) \max_{\alpha} Q^{1}(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$

 $+ T(\text{rich, plant, poor}) \max_{\alpha} Q^{1}(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$

 $+T(\text{rich, plant, poor}) \max_{\alpha} Q^{1}(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$

$$+$$
 (0.9) $\max_{a'} Q^1(\text{poor}, a')$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

$$Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$$

$$+(0.9) \max_{a'} Q^{1}(poor, a')$$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

 $Q^1(\text{rich}, \text{plant}) = 100; Q^1(\text{rich}, \text{fallow}) = 0;$ $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

$$Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$$

+(0.9)(10)

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

 $Q^1(\text{rich}, \text{plant}) = 100; Q^1(\text{rich}, \text{fallow}) = 0;$ $Q^1(poor, plant) = 10; Q^1(poor, fallow) = 0$

$$Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$$

$$+(0.9)(10) = 119$$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = 119$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

$$Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$$

$$Q^{2}(\text{rich, plant}) = 119; Q^{2}(\text{rich, fallow}) = 91;$$

 $Q^2(\text{poor}, \text{plant}) = 29; Q^2(\text{poor}, \text{fallow}) = 91$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

- $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$
- $Q^2(\text{rich}, \text{plant}) = 119; Q^2(\text{rich}, \text{fallow}) = 91;$
 - $Q^2(\text{poor}, \text{plant}) = 29; Q^2(\text{poor}, \text{fallow}) = 91$

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg \max_a Q^h(s, a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

- $Q^1(\text{rich}, \text{plant}) = 100; Q^1(\text{rich}, \text{fallow}) = 0;$ $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich}, \text{plant}) = 119; Q^2(\text{rich}, \text{fallow}) = 91;$

 $Q^2(\text{poor}, \text{plant}) = 29; Q^2(\text{poor}, \text{fallow}) = 91$

What's best? Any s, $\pi_1^*(s) = \text{plant}; \frac{\pi_2^*(\text{rich})}{r}$

 $\pi_2^*(\text{poor})$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

 $Q^2(\text{rich, plant}) = 119; Q^2(\text{rich, fallow}) = 91;$ $Q^2(\text{poor, plant}) = 29; Q^2(\text{poor, fallow}) = 91$

What's best? Any s, $\pi_1^*(s) = \text{plant}$; $\pi_2^*(\text{rich}) = \text{plant}$, $\pi_2^*(\text{poor}) = \text{fallow}$

- h: horizon (e.g. how many planting seasons) R(poor,fallow)=0
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

$$Q^2(\text{rich}, \text{plant}) = 119; Q^2(\text{rich}, \text{fallow}) = 91;$$

$$Q^2(\text{poor}, \text{plant}) = 29; Q^2(\text{poor}, \text{fallow}) = 91$$

What's best? Any s, $\pi_1^*(s) = \text{plant}$; $\pi_2^*(\text{rich}) = \text{plant}$, $\pi_2^*(\text{poor}) = \text{fallow}$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s,a) = 0; Q^{h}(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^{1}(poor, plant) = 10; Q^{1}(poor, fallow) = 0$

 $Q^2(\text{rich}, \text{plant}) = 119; Q^2(\text{rich}, \text{fallow}) = 91;$

 $Q^2(\text{poor}, \text{plant}) = 29; Q^2(\text{poor}, \text{fallow}) = 91$

What's best? Any s, $\pi_1^*(s) = \text{plant}$; $\pi_2^*(\text{rich}) = \text{plant}$, $\pi_2^*(\text{poor}) = \text{fallow}$

"finite-horizon value iteration"

What if I don't stop farming?

What if I don't stop farming?

Good news! No strip mall, and I get to keep the farm forever

Problem: 1,000 bushels today > 1,000 bushels in ten years

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

poor soil

O.9

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=100
R(rich,fallow)=0

Problem: 1,000 bushels today > 1,000 bushels in ten years

R(poor,fallow)=0

• A solution: discount factor $\gamma:0<\gamma<1$

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: **discount factor** $\gamma : 0 < \gamma < 1$
 - Value of 1 bushel after t time steps: γ^t bushels

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever?

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? ${\cal V}$

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots$

What if I don't stop farming?

O.1

Plant:

poor soil

rich soil

Open Soil

poor soil

poor soil

R(rich,plant)=100

R(poor,plant)=10

R(rich,fallow)=0

R(poor,fallow)=0

0.1

- A solution: discount factor $\gamma:0<\gamma<1$
- Value of 1 bushel after t time steps: γ^t bushels
- Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V = 1/(1 - \gamma)$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V = 1 + \gamma + \gamma^2 + \dots = 1 + \gamma(1 + \gamma + \gamma^2 + \dots) = 1 + \gamma V$ $V = 1/(1 - \gamma)$ E.g. $\gamma = 0.99$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g. } \gamma=0.99 \Rightarrow V=1/0.01$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = \frac{R(s, \pi(s))}{R(s, \pi(s))} + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \frac{\gamma}{\gamma} \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns