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Who’s talking? Pro
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 Theorem. If run for
enough outer iterations,
S : the k-means algorithm
will converge to a local
minimum of the k-
means objective

e That local minimum
could be bad!

* [he initialization can
make a big difference

* Some options: random
restarts, k-means++
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* How to choose k depends on what you'd like to do
 E.Q. cost-benefit trade-oft
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from data. (See the rest of the course!)
« Why study ML? To apply; to understand; to evaluate
 Notes: ML is not magic. ML is built on math.



